
Approximate Lifting Techniques for Belief Propagation
Supplementary Material

Parag Singla

Department of Computer Science and Engineering

Indian Institute of Technology Delhi

Hauz Khas, New Delhi, 110016, INDIA.

parags@cse.iitd.ac.in

Aniruddh Nath and Pedro Domingos

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195-2350, U.S.A.

{nath, pedrod}@cs.washington.edu

1 Message Errors on Factor Graphs

In section 2, we defined µxf and µfx, the BP messages,

and Mx, the marginal of a variable. We define a similar

quantity for factors:

Mfx,i(x) =
∏

y∈nb(f)\{x}

µyf,i(yx)

Let µ̂xf , µ̂fx, M̂x and M̂fx be our approximations of these

quantities. These approximations can be viewed as multi-

plicative errors on the ‘true’ quantities at some fixed point

of BP:

µ̂xf,i(x) = µxf,i(x)exf,i(x)

µ̂fx,i(x) = µfx,i(x)efx,i(x)

M̂x,i(x) = Mx,i(x)Ex,i(x)

M̂fx,i(x) = Mfx,i(x)Efx,i(x)

(Here, e and E are the multiplicative error functions.)

If the potentials are finite, we can bound the growth of the

dynamic range of the error with respect to the operations of

BP, using logic very similar to Ihler et al. (2005).

Theorem 2.

log d(exf,i+1) ≤
∑

h∈nb(x)\{f}

log d(ehx,i)

log d(Ex,i+1) ≤
∑

h∈nb(x)

log d(ehx,i)

Proof. Both equations can be proved by the same argument

as Theorem 6 of Ihler et al. (2005).

Theorem 3.

d(efx,i+1) ≤
d(f)2d(Efx,i) + 1

d(f)2 + d(Exf,i)

Proof.

d(efx,i+1) = d(µ̂fx/µfx)

= max
a,b

∑

xa
f(xa)Mfx(xa)Efx(xa)
∑

xa
f(xa)Mfx(xa)

.

∑

xb
f(xb)Mfx(xb)

∑

xb
f(xb)Mfx(xb)Efx(xb)

The result follows from the same argument as Appendix A

of Ihler et al. (2005).

2 Error Bound for Noisy Hypercubes

The methods of Ihler et al. (2005) can be extended to bound

the error introduced by noise-tolerant hypercube formation,

using logic similar to Theorem 1 (the error bound for early

stopping).

Note that the noisy hypercube approximation is equiva-

lent to flipping the values of certain nodes: true evidence

nodes may become false or unknown, or vice versa. For

the flipped nodes, the bound is vacuous: the error in the

probability may be at most 1. However, we can bound the

change in probability on the remaining nodes in the net-

work, by bounding the change in the outgoing messages

from the factors.

We can place an upper bound on the errors by assuming

that the flipped nodes will maximally alter the outgoing

messages from the factors adjacent to them. Since each

factor f corresponds to some MLN formula with weight

wf , f(x) for all states is between 1 and ewf . As a result,

the normalized outgoing messages µfx(a) to node x are

between 1 and ewf for all a, both before and after the intro-

duction of noise. The dynamic range of the error function

can be bounded as follows:

d(efx) ≤ max
(√

e2wf ,
√
e−2wf

)

Thus, Theorem 1 can be modified as follows for the noisy

hypercube case:

Theorem 4. If ground BP converges, then for node x, the

probability estimated by ground BP at convergence (px)

can be bounded as follows in terms of the probability p̂x es-

timated by lifted BP after n BP steps with some set Xflipped

of the nodes flipped to a different evidence value.

px ≥ 1

(ζx,n)2[(1/p̂x)− 1] + 1
= lb(px)

px ≤ 1

(1/ζx,n)2[(1/p̂x)− 1] + 1
= ub(px)

where log ζx,n =
∑

f∈nb(x) log νfx,n,

log νxf,i+1 =
∑

h∈nb(x)\{f}

log νhx,i

For factors f adjacent to some node x ∈ Xflipped,

νfx,i = max
(√

e2wf ,
√
e−2wf

)

For all other factors f ,

log νfx,i = log
d(f)2εfx,i + 1

d(f)2 + εfx,i

and νfx,1 = d(f)2

log εfx,i =
∑

y∈nb(f)\{x}

log νyf,i

d(f) = sup
x,y

√

f(x)/f(y)

3 Additional Experimental Results

3.1 ADDITIONAL DATASETS

3.1.1 Advising Relationships

We predicted advising relationships between students and

professors (as described in Richardson and Domingos

(2006), using the UW-CSE database and MLN publicly

available from the Alchemy website (Kok et al., 2008).

We removed the clauses containing existential qualifiers.

The database is divided into five areas (AI, graphics, etc.).

The database contains a total of 2678 groundings of predi-

cates describing whether someone is a student or professor,

who teaches which class, who published which papers, etc.

The model was trained using L-BFGS to optimize pseudo-

likelihood, using the default parameter settings in Alchemy.

3.1.2 Protein Interactions

We predicted protein interactions in the Yeast Pro-

tein dataset from the MIPS (Munich Information Cen-

ter for Protein Sequence) Comprehensive Yeast Genome

Database, as of February 2005 (Mewes et al., 2002). The

dataset, originally used in Davis et al. (2005) include in-

formation on protein location, function, phenotype, class,

and enzymes. It also includes information about protein-

protein interactions and protein complexes.

The original data contains information about approxi-

mately 4500 proteins and their interactions. We used the

processed version this dataset as described by Davis and

Domingos (2009). This consists of four disjoint subsam-

ples of the original data, each with around 450 proteins. To

create each subsample, starting with a randomly selected

seed set of proteins, all previously unselected proteins that

appeared within two links (via the interaction predicate) of

the seed set were included. The goal was predict the inter-

action relation. We used the MLN learned by the Refine

algorithm described by Davis and Domingos (2009).

References

Davis, J., Burnside, E., Dutra, I., Page, D., & Costa, V. S.

(2005). An integrated approach to learning Bayesian net-

works of rules. Proc. of ECML-05.

Davis, J., & Domingos, P. (2009). Deep transfer via

second-order Markov logic. Proc. of ICML-09.

Ihler, A. T., Fisher, J. W., & Willsky, A. S. (2005). Loopy

belief propagation: Convergence and effects of message

errors. Journal of Machine Learning Research, 6.

Kok, S., Sumner, M., Richardson, M., Singla, P.,

Poon, H., Lowd, D., Wang, J., & Domingos, P.

(2008). The Alchemy system for statistical relational

AI (Technical Report). University of Washington.

http://alchemy.cs.washington.edu.

Mewes, H. W., Frishman, D., Güldener, U., Mannhaupt,

G., Mayer, K., Mokreis, M., Morgenstern, B.,

Münsterkötter, M., Rudd, S., & Weil, B. (2002). MIPS:

a database for genomes and protein sequences. Nucleic

Acids Research, 30.

Richardson, M., & Domingos, P. (2006). Markov logic

networks. Machine Learning, 62.

Table 1: Experimental Results. Memory is in MB; Features and Tuples are in thousands.

Algorithm Time (in seconds) Memory Accuracy

Construct BP Total Memory Features Tuples CLL AUC
U

W
-C

S
E

Ground 1.6 502.0 503.7 101 227.3 227.3 -0.022 0.338

Extensional 7.9 215.7 223.6 193 92.1 227.3 -0.022 0.338

Resolution 8.0 214.8 222.9 193 92.1 227.3 -0.022 0.338

Hypercube 19.2 232.9 252.1 180 92.1 92.4 -0.022 0.338

Early Stop 4.1 100.5 104.6 80 47.6 86.1 -0.022 0.338

Noise-Tol. 8.1 91.6 99.8 76 37.0 37.4 -0.024 0.224

Y
ea

st

Ground 34.8 1743.0 1777.9 426 639.5 639.5 -0.033 0.043

Extensional 75.4 5.9 81.3 443 142.4 639.5 -0.033 0.043

Resolution 77.9 6.1 84.0 443 142.4 639.5 -0.033 0.043

Hypercube 206.8 1.9 208.7 354 142.4 146.4 -0.033 0.043

Early Stop 207.4 1.9 209.3 354 142.4 146.4 -0.033 0.043

Noise-Tol. 97.7 1.3 99.0 304 107.8 100.1 -0.033 0.043

 0

 1000

 2000

 3000

 4000

 5000

 0 2 4 6 8 10

T
im

e
(s

ec
on

ds
)

No. of Iterations

Figure 1: Time vs. number of iterations for early stopping

on Denoise.

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10

M
em

or
y

(M
B

)

No. of Iterations

Figure 2: Memory vs. number of iterations for early stop-

ping on Denoise.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 2 4 6 8 10

L
og

-l
ik

el
ih

oo
d

No. of Iterations

Figure 3: Log-likelihood vs. number of iterations for early

stopping on Denoise.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

A
U

C

No. of Iterations

Figure 4: AUC vs. number of iterations for early stopping

on Denoise.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

T
im

e
U

sa
ge

 (
se

co
nd

s)

Noise

Time Usage for Cora (TFIDF) with noise

Time Usage

Figure 5: Time vs. noise tolerance on Cora.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5

M
em

 U
sa

ge
 (

M
B

)

Noise

Memory Usage for Cora (TFIDF) with noise

Memory Usage

Figure 6: Memory vs. noise tolerance on Cora.

-5

-4

-3

-2

-1

 0

 0 1 2 3 4 5

ll

noise

LL for Cora (TFIDF) with noise

LL

Figure 7: Log-likelihood vs. noise tolerance on Cora.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

A
U

C

noise

AUC for Cora (TFIDF) with noise

AUC

Figure 8: AUC vs. noise tolerance on Cora.

