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Abstract. Link mining problems are characterized by high complexity
(since linked objects are not statistically independent) and uncertainty
(since data is noisy and incomplete). Thus they necessitate a modeling
language that is both probabilistic and relational. Markov logic provides
this by attaching weights to formulas in first-order logic and viewing
them as templates for features of Markov networks. Many link mining
problems can be elegantly formulated and efficiently solved using Markov
logic. Inference algorithms for Markov logic draw on ideas from satisfi-
ability testing, Markov chain Monte Carlo, belief propagation and reso-
lution. Learning algorithms are based on convex optimization, pseudo-
likelihood and inductive logic programming. Markov logic has been used
successfully in a wide variety of link mining applications, and is the basis
of the open-source Alchemy system.

1 Introduction

Most objects and entities in the world are not independent, but are instead linked
to many other objects through a diverse set of relationships: people have friends,
family, and coworkers; scientific papers have authors, venues, and references to
other papers; Web pages link to other Web pages and have hierarchical structure;
proteins have locations and functions, and interact with other proteins. In these



examples, as in many others, the context provided by these relationships is es-
sential for understanding the entities themselves. Furthermore, the relationships
are often worthy of analysis in their own right. In link mining, the connections
among objects are explicitly modeled to improve performance in tasks such as
classification, clustering, and ranking, as well as enabling new applications, such
as link prediction.

As link mining grows in popularity, the number of link mining problems and
approaches continues to multiply. Rather than solving each problem and devel-
oping each technique in isolation, we need a common representation language
for link mining. Such a language would serve as an interface layer between link
mining applications and the algorithms used to solve them, much as the Internet
serves as an interface layer for networking, relational models serve as an interface
layer for databases, etc. This would both unify many approaches and lower the
barrier of entry to new researchers and practitioners.

At a minimum, a formal language for link mining must be (a) relational and
(b) probabilistic. Link mining problems are clearly relational, since each link
among objects can be viewed as a relation. First-order logic is a powerful and
flexible way to represent relational knowledge. Important concepts such as tran-
sitivity (e.g., “My friend’s friend is also my friend”), homophily (e.g., “Friends
have similar smoking habits”), and symmetry (e.g., “Friendship is mutual”) can
be expressed as short formulas in first-order logic. It is also possible to repre-
sent much more complex, domain-specific rules, such as “Each graduate student
coauthors at least one publication with his or her advisor.”

Most link mining problems have a great deal of uncertainty as well. Link data
is typically very noisy and incomplete. Even with a perfect model, few questions
can be answered with certainty due to limited evidence and inherently stochas-
tic domains. The standard language for modeling uncertainty is probability. In
particular, probabilistic graphical models have proven an effective tool in solving
a wide variety of problems in data mining and machine learning.

Since link mining problems are both relational and uncertain, they require
methods that combine logic and probability. Neither one alone suffices: first-
order logic is too brittle, and does not handle uncertainty; standard graphical
models assume data points are i.i.d. (independent and identically distributed),
and do not handle the relational dependencies and variable-size networks present
in link mining problems.

Markov logic [7] is a simple yet powerful generalization of probabilistic graph-
ical models and first-order logic, making it ideally suited for link mining. A
Markov logic network is a set of weighted first-order formulas, viewed as tem-
plates for constructing Markov networks. This yields a well-defined probability
distribution in which worlds are more likely when they satisfy a higher-weight set
of ground formulas. Intuitively, the magnitude of the weight corresponds to the
relative strength of its formula; in the infinite-weight limit, Markov logic reduces
to first-order logic. Weights can be set by hand or learned automatically from
data. Algorithms for learning or revising formulas from data have also been de-
veloped. Inference algorithms for Markov logic combine ideas from probabilistic



and logical inference, including Markov chain Monte Carlo, belief propagation,
satisfiability, and resolution.

Markov logic has already been used to efficiently develop state-of-the-art
models for many link mining problems, including collective classification, link-
based clustering, record linkage, and link prediction, in application areas such as
the Web, social networks, molecular biology, information extraction, and others.
Markov logic makes link mining easier by offering a simple framework for rep-
resenting well-defined probability distributions over uncertain, relational data.
Many existing approaches can be described by a few weighted formulas, and
multiple approaches can be combined by including all of the relevant formulas.
Many algorithms, as well as sample datasets and applications, are available in
the open-source Alchemy system [17] (alchemy.cs.washington.edu).

In this chapter, we describe Markov logic and its algorithms, and show how
they can be used as a general framework for link mining. We begin with back-
ground on first-order logic and Markov networks. We then define Markov logic
and a few of its basic extensions. Next, we discuss a number of inference and
learning algorithms. Finally, we show two link mining applications, each of which
can be written in just a few formulas and solved using the previous algorithms.

2 First-Order Logic

A first-order knowledge base (KB) is a set of sentences or formulas in first-
order logic [9]. Formulas are constructed using four types of symbols: constants,
variables, functions, and predicates. Constant symbols represent objects in the
domain of interest (e.g., people: Anna, Bob, Chris, etc.). Variable symbols range
over the objects in the domain. Function symbols (e.g., MotherOf) represent
mappings from tuples of objects to objects. Predicate symbols represent rela-
tions among objects in the domain (e.g., Friends) or attributes of objects (e.g.,
Smokes). An interpretation specifies which objects, functions and relations in the
domain are represented by which symbols. Variables and constants may be typed,
in which case variables range only over objects of the corresponding type, and
constants can only represent objects of the corresponding type. For example, the
variable x might range over people (e.g., Anna, Bob, etc.), and the constant C

might represent a city (e.g, Seattle, Tokyo, etc.).
A term is any expression representing an object in the domain. It can be a

constant, a variable, or a function applied to a tuple of terms. For example, Anna,
x, and GreatestCommonDivisor(x, y) are terms. An atomic formula or atom is a
predicate symbol applied to a tuple of terms (e.g., Friends(x, MotherOf(Anna))).
Formulas are recursively constructed from atomic formulas using logical connec-
tives and quantifiers. If F1 and F2 are formulas, the following are also formulas:
¬F1 (negation), which is true iff F1 is false; F1 ∧ F2 (conjunction), which is
true iff both F1 and F2 are true; F1 ∨ F2 (disjunction), which is true iff F1 or
F2 is true; F1 ⇒ F2 (implication), which is true iff F1 is false or F2 is true;
F1 ⇔ F2 (equivalence), which is true iff F1 and F2 have the same truth value;
∀x F1 (universal quantification), which is true iff F1 is true for every object x



in the domain; and ∃x F1 (existential quantification), which is true iff F1 is true
for at least one object x in the domain. Parentheses may be used to enforce
precedence. A positive literal is an atomic formula; a negative literal is a negated
atomic formula. The formulas in a KB are implicitly conjoined, and thus a KB
can be viewed as a single large formula. A ground term is a term containing no
variables. A ground atom or ground predicate is an atomic formula all of whose
arguments are ground terms. A possible world (along with an interpretation)
assigns a truth value to each possible ground atom.

A formula is satisfiable iff there exists at least one world in which it is true.
The basic inference problem in first-order logic is to determine whether a knowl-
edge base KB entails a formula F , i.e., if F is true in all worlds where KB is
true (denoted by KB |= F ). This is often done by refutation: KB entails F iff
KB ∪ ¬F is unsatisfiable. (Thus, if a KB contains a contradiction, all formulas
trivially follow from it, which makes painstaking knowledge engineering a ne-
cessity.) For automated inference, it is often convenient to convert formulas to
a more regular form, typically clausal form (also known as conjunctive normal
form (CNF)). A KB in clausal form is a conjunction of clauses, a clause being a
disjunction of literals. Every KB in first-order logic can be converted to clausal
form using a mechanical sequence of steps.5 Clausal form is used in resolution,
a sound and refutation-complete inference procedure for first-order logic [34].

Inference in first-order logic is only semidecidable. Because of this, knowledge
bases are often constructed using a restricted subset of first-order logic with more
desirable properties. The most widely-used restriction is to Horn clauses, which
are clauses containing at most one positive literal. The Prolog programming
language is based on Horn clause logic [20]. Prolog programs can be learned
from databases by searching for Horn clauses that (approximately) hold in the
data; this is studied in the field of inductive logic programming (ILP) [18].

Table 1 shows a simple KB and its conversion to clausal form. Notice that,
while these formulas may be typically true in the real world, they are not always
true. In most domains it is very difficult to come up with non-trivial formulas
that are always true, and such formulas capture only a fraction of the relevant
knowledge. Thus, despite its expressiveness, pure first-order logic has limited
applicability to practical link mining problems. Many ad hoc extensions to ad-
dress this have been proposed. In the more limited case of propositional logic,
the problem is well solved by probabilistic graphical models such as Markov net-
works, described in the next section. We will later show how to generalize these
models to the first-order case.

3 Markov Networks

A Markov network (also known as Markov random field) is a model for the joint
distribution of a set of variables X = (X1,X2, . . . ,Xn) ∈ X [27]. It is composed

5 This conversion includes the removal of existential quantifiers by Skolemization,
which is not sound in general. However, in finite domains an existentially quantified
formula can simply be replaced by a disjunction of its groundings.



Table 1. Example of a first-order knowledge base and MLN. Fr() is short for Friends(),
Sm() for Smokes(), and Ca() for Cancer().

First-Order Logic Clausal Form Weight

“Friends of friends are friends.”
∀x∀y∀z Fr(x, y) ∧ Fr(y, z) ⇒ Fr(x, z) ¬Fr(x, y) ∨ ¬Fr(y, z) ∨ Fr(x, z) 0.7

“Friendless people smoke.”
∀x (¬(∃y Fr(x, y)) ⇒ Sm(x)) Fr(x, g(x)) ∨ Sm(x) 2.3

“Smoking causes cancer.”
∀x Sm(x) ⇒ Ca(x) ¬Sm(x) ∨ Ca(x) 1.5

“If two people are friends, then either
both smoke or neither does.” ¬Fr(x, y) ∨ Sm(x) ∨ ¬Sm(y), 1.1
∀x∀y Fr(x, y) ⇒ (Sm(x) ⇔ Sm(y)) ¬Fr(x, y) ∨ ¬Sm(x) ∨ Sm(y) 1.1

of an undirected graph G and a set of potential functions φk. The graph has a
node for each variable, and the model has a potential function for each clique
in the graph. A potential function is a non-negative real-valued function of the
state of the corresponding clique. The joint distribution represented by a Markov
network is given by

P (X =x) =
1

Z

∏

k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of the variables that
appear in that clique). Z, known as the partition function, is given by Z =
∑

x∈X

∏

k φk(x{k}). Markov networks are often conveniently represented as log-
linear models, with each clique potential replaced by an exponentiated weighted
sum of features of the state, leading to

P (X =x) =
1

Z
exp





∑

j

wjfj(x)



 (2)

A feature may be any real-valued function of the state. This chapter will focus on
binary features, fj(x) ∈ {0, 1}. In the most direct translation from the potential-
function form (Equation 1), there is one feature corresponding to each possible
state x{k} of each clique, with its weight being log φk(x{k}). This representation
is exponential in the size of the cliques. However, we are free to specify a much
smaller number of features (e.g., logical functions of the state of the clique),
allowing for a more compact representation than the potential-function form,
particularly when large cliques are present. Markov logic will take advantage of
this.

4 Markov Logic

A first-order KB can be seen as a set of hard constraints on the set of possible
worlds: if a world violates even one formula, it has zero probability. The basic



idea in Markov logic is to soften these constraints: when a world violates one
formula in the KB it is less probable, but not impossible. The fewer formulas a
world violates, the more probable it is. Each formula has an associated weight
(e.g., see Table 1) that reflects how strong a constraint it is: the higher the weight,
the greater the difference in log probability between a world that satisfies the
formula and one that does not, other things being equal.

Definition 1. [32] A Markov logic network (MLN) L is a set of pairs (Fi, wi),
where Fi is a formula in first-order logic and wi is a real number. Together with
a finite set of constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C

(Equations 1 and 2) as follows:

1. ML,C contains one binary node for each possible grounding of each atom
appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. ML,C contains one feature for each possible grounding of each formula Fi

in L. The value of this feature is 1 if the ground formula is true, and 0
otherwise. The weight of the feature is the wi associated with Fi in L.

Thus there is an edge between two nodes of ML,C iff the corresponding
ground atoms appear together in at least one grounding of one formula in L. For
example, an MLN containing the formulas ∀x Smokes(x) ⇒ Cancer(x) (smoking
causes cancer) and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) (friends
have similar smoking habits) applied to the constants Anna and Bob (or A and
B for short) yields the ground Markov network in Figure 1. Its features include
Smokes(Anna) ⇒ Cancer(Anna), etc. Notice that, although the two formulas
above are false as universally quantified logical statements, as weighted features
of an MLN they capture valid statistical regularities, and in fact represent a
standard social network model [43]. Notice also that nodes and links in the
social networks are both represented as nodes in the Markov network; arcs in
the Markov network represent probabilistic dependencies between nodes and
links in the social network (e.g., Anna’s smoking habits depend on her friends’
smoking habits).

An MLN can be viewed as a template for constructing Markov networks. From
Definition 1 and Equations 1 and 2, the probability distribution over possible
worlds x specified by the ground Markov network ML,C is given by

P (X =x) =
1

Z
exp

(

F
∑

i=1

wini(x)

)

(3)

where F is the number of formulas in the MLN and ni(x) is the number of true
groundings of Fi in x. As formula weights increase, an MLN increasingly resem-
bles a purely logical KB, becoming equivalent to one in the limit of all infinite
weights. When the weights are positive and finite, and all formulas are simul-
taneously satisfiable, the satisfying solutions are the modes of the distribution



Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

Fig. 1. Ground Markov network obtained by applying an MLN containing the formulas
∀x Smokes(x) ⇒ Cancer(x) and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) to the
constants Anna(A) and Bob(B).

represented by the ground Markov network. Most importantly, Markov logic al-
lows contradictions between formulas, which it resolves simply by weighing the
evidence on both sides.

It is interesting to see a simple example of how Markov logic generalizes
first-order logic. Consider an MLN containing the single formula ∀x R(x) ⇒ S(x)
with weight w, and C = {A}. This leads to four possible worlds: {¬R(A),¬S(A)},
{¬R(A), S(A)}, {R(A),¬S(A)}, and {R(A), S(A)}. From Equation 3 we obtain that
P ({R(A),¬S(A)}) = 1/(3ew + 1) and the probability of each of the other three
worlds is ew/(3ew + 1). (The denominator is the partition function Z; see Sec-
tion 3.) Thus, if w > 0, the effect of the MLN is to make the world that is
inconsistent with ∀x R(x) ⇒ S(x) less likely than the other three. From the
probabilities above we obtain that P (S(A)|R(A)) = 1/(1 + e−w). When w → ∞,
P (S(A)|R(A)) → 1, recovering the logical entailment.

It is easily seen that all discrete probabilistic models expressible as products
of potentials, including Markov networks and Bayesian networks, are expressible
in Markov logic. In particular, many of the models frequently used in machine
learning and data mining can be stated quite concisely as MLNs, and combined
and extended simply by adding the corresponding formulas. Most significantly,
Markov logic facilitates the construction of non-i.i.d. models (i.e., models where
objects are not independent and identically distributed). The application section
shows how to describe logistic regression in Markov logic and easily extend it to
perform collective classification over a set of linked objects.

When working with Markov logic, we typically make three assumptions about
the logical representation: different constants refer to different objects (unique
names), the only objects in the domain are those representable using the con-
stant and function symbols (domain closure), and the value of each function for
each tuple of arguments is always a known constant (known functions). These
assumptions ensure that the number of possible worlds is finite and that the
Markov logic network will give a well-defined probability distribution. These
assumptions are quite reasonable in most practical applications, and greatly



simplify the use of MLNs. We will make these assumptions for the remainder of
the chapter. See Richardson and Domingos [32] for further details on the Markov
logic representation.

Markov logic can also be applied to a number of interesting infinite domains
where some of these assumptions do not hold. See Singla and Domingos [39] for
details on Markov logic in infinite domains.

For decision theoretic problems, such as the viral marketing application we
will discuss later, we can easily extend MLNs to Markov logic decision networks
(MLDNs) by attaching a utility to each formula as well as a weight [25]. The
utility of a world is the sum of the utilities of its satisfied formulas. Just as an
MLN plus a set of constants defines a Markov network, an MLDN plus a set of
constants defines a Markov decision network. The optimal decision is the setting
of the action predicates that jointly maximizes expected utility.

5 Inference

Given an MLN model of a link mining problem, the questions of interest are
answered by performing inference on it. (For example, “What are the topics of
these Web pages, given the words on them and the links between them?”) Recall
that an MLN acts as a template for a Markov network. Therefore, we can always
answer queries using standard Markov network inference methods on the instan-
tiated network. Several of these methods have been extended to take particular
advantage of the logical structure in an MLN, yielding tremendous savings in
memory and time. We first provide an overview of inference in Markov networks,
and then describe how these methods can be adapted to take advantage of MLN
structure.

5.1 Markov Network Inference

The main inference problem in Markov networks is computing the probabilities of
query variables given some evidence, and is #P-complete [35]. The most widely
used method for approximate inference in Markov networks is Markov chain
Monte Carlo (MCMC) [10], and in particular Gibbs sampling, which proceeds
by sampling each variable in turn given its Markov blanket. (The Markov blanket
of a node is the minimal set of nodes that renders it independent of the remaining
network; in a Markov network, this is simply the node’s neighbors in the graph.)
Marginal probabilities are computed by counting over these samples; conditional
probabilities are computed by running the Gibbs sampler with the conditioning
variables clamped to their given values.

Another popular method for inference in Markov networks is belief propaga-
tion [46]. Belief propagation is an algorithm for computing the exact marginal
probability of each query variable in a tree-structured graphical model. The
method consists of passing messages between variables and the potential func-
tions they participate in. The message from a variable x to a potential function



f is

µx→f (x) =
∏

h∈nb(x)\{f}

µh→x(x) (4)

where nb(x) is the set of potentials x appears in. The message from a potential
function to a variable is

µf→x(x) =
∑

∼{x}



f(x)
∏

y∈nb(f)\{x}

µy→f (y)



 (5)

where nb(f) are the variables in f , and the sum is over all of these except x. In
a tree, the messages from leaf variables are initialized to 1, and a pass from the
leaves to the root and back to the leaves suffices. The (unnormalized) marginal
of each variable x is then given by

∏

h∈nb(x) µh→x(x). Evidence is incorporated

by setting f(x) = 0 for states x that are incompatible with it. This algorithm
can still be applied when the graph has loops, repeating the message-passing
until convergence. Although this loopy belief propagation has no guarantees of
convergence or of giving accurate results, in practice it often does, and can be
much more efficient than other methods.

Another basic inference task is finding the most probable state of the world
given some evidence. This is known as MAP inference in the Markov network
literature, and MPE inference in the Bayesian network literature. (MAP means
“maximum a posteriori,” and MPE means “most probable explanation.”) It is
NP-hard. Notice that MAP inference cannot be solved simply by computing
the probability of each random variable and then assigning the most probable
value, because the combination of two assignments that are individually probable
may itself be improbable or even impossible. Belief propagation can also be
used to solve the MAP problem, by replacing summation with maximization in
Equation 5. Other popular methods include greedy search, simulated annealing
and graph cuts.

We first look at how to perform MAP inference, and then at computing
probabilities. In the remainder of this chapter, we assume that the MLN is in
function-free clausal form for convenience, but these methods can be applied to
other MLNs as well.

5.2 MAP/MPE Inference

Because of the form of Equation 3, in Markov logic the MAP inference problem
reduces to finding the truth assignment that maximizes the sum of weights of
satisfied clauses. This can be done using any weighted satisfiability solver, and
(remarkably) need not be more expensive than standard logical inference by
model checking. (In fact, it can be faster, if some hard constraints are softened.)
The Alchemy system uses MaxWalkSAT, a weighted variant of the WalkSAT
local-search satisfiability solver, which can solve hard problems with hundreds
of thousands of variables in minutes [12]. MaxWalkSAT performs this stochastic
search by picking an unsatisfied clause at random and flipping the truth value of



Table 2. MaxWalkSAT algorithm for MPE inference.

function MaxWalkSAT(L, tmax, fmax, target, p)
inputs: L, a set of weighted clauses

tmax, the maximum number of tries
fmax, the maximum number of flips
target, target solution cost
p, probability of taking a random step

output: soln, best variable assignment found
vars ← variables in L

for i ← 1 to tmax

soln ← a random truth assignment to vars

cost ← sum of weights of unsatisfied clauses in soln

for i ← 1 to fmax

if cost ≤ target

return “Success, solution is”, soln

c ← a randomly chosen unsatisfied clause
if Uniform(0,1) < p

vf ← a randomly chosen variable from c

else

for each variable v in c

compute DeltaCost(v)
vf ← v with lowest DeltaCost(v)

soln ← soln with vf flipped
cost ← cost + DeltaCost(vf )

return “Failure, best assignment is”, best soln found

one of the atoms in it. With a certain probability, the atom is chosen randomly;
otherwise, the atom is chosen to maximize the sum of satisfied clause weights
when flipped. This combination of random and greedy steps allows MaxWalk-
SAT to avoid getting stuck in local optima while searching. Pseudocode for
MaxWalkSAT is shown in Table 2. DeltaCost(v) computes the change in the
sum of weights of unsatisfied clauses that results from flipping variable v in the
current solution. Uniform(0,1) returns a uniform deviate from the interval [0, 1].

MAP inference in Markov logic can also be performed using cutting plane
methods [33] and others.

5.3 Marginal and Conditional Probabilities

We now consider the task of computing the probability that a formula holds,
given an MLN and set of constants, and possibly other formulas as evidence. For
the remainder of the chapter, we focus on the typical case where the evidence is
a conjunction of ground atoms. In this scenario, further efficiency can be gained
by applying a generalization of knowledge-based model construction [45]. This
constructs only the minimal subset of the ground network required to answer



the query, and runs MCMC (or any other probabilistic inference method) on it.
The network is constructed by checking if the atoms that appear in the query
formula are in the evidence. If they are, the construction is complete. Those
that are not are added to the network, and we in turn check the atoms they
directly depend on (i.e., the atoms that appear in some formula with them).
This process is repeated until all relevant atoms have been retrieved. While in
the worst case it yields no savings, in practice it can vastly reduce the time and
memory required for inference. See Richardson and Domingos [32] for details.

Given the relevant ground network, inference can be performed using stan-
dard methods like MCMC and belief propagation. One problem with this is that
these methods break down in the presence of deterministic or near-deterministic
dependencies. Deterministic dependencies break up the space of possible worlds
into regions that are not reachable from each other, violating a basic require-
ment of MCMC. Near-deterministic dependencies greatly slow down inference,
by creating regions of low probability that are very difficult to traverse. Run-
ning multiple chains with random starting points does not solve this problem,
because it does not guarantee that different regions will be sampled with fre-
quency proportional to their probability, and there may be a very large number
of regions.

We have successfully addressed this problem by combining MCMC with sat-
isfiability testing in the MC-SAT algorithm [28]. MC-SAT is a slice sampling
MCMC algorithm. It uses a combination of satisfiability testing and simulated
annealing to sample from the slice. The advantage of using a satisfiability solver
(WalkSAT) is that it efficiently finds isolated modes in the distribution, and as
a result the Markov chain mixes very rapidly. The slice sampling scheme en-
sures that detailed balance is (approximately) preserved. MC-SAT is orders of
magnitude faster than standard MCMC methods such as Gibbs sampling and
simulated tempering, and is applicable to any model that can be expressed in
Markov logic.

Slice sampling [4] is an instance of a widely used approach in MCMC inference
that introduces auxiliary variables to capture the dependencies between observed
variables. For example, to sample from P (X = x) = (1/Z)

∏

k φk(x{k}), we
can define P (X = x,U = u) = (1/Z)

∏

k I[0,φk(x{k})](uk), where φk is the kth
potential function, uk is the kth auxiliary variable, I[a,b](uk) = 1 if a ≤ uk ≤ b,
and I[a,b](uk) = 0 otherwise. The marginal distribution of X under this joint
is P (X = x), so to sample from the original distribution it suffices to sample
from P (x, u) and ignore the u values. P (uk|x) is uniform in [0, φk(x{k})], and
thus easy to sample from. The main challenge is to sample x given u, which
is uniform among all X that satisfies φk(x{k}) ≥ uk for all k. MC-SAT uses
SampleSAT [44] to do this. In each sampling step, MC-SAT takes the set of
all ground clauses satisfied by the current state of the world and constructs a
subset, M , that must be satisfied by the next sampled state of the world. (For
the moment we will assume that all clauses have positive weight.) Specifically, a
satisfied ground clause is included in M with probability 1−e−w, where w is the
clause’s weight. We then take as the next state a uniform sample from the set of



Table 3. Efficient MCMC inference algorithm for MLNs.

function MC-SAT(L, n)
inputs: L, a set of weighted clauses {(wj , cj)}

n, number of samples

output: {x(1), . . . , x(n)}, set of n samples

x(0) ← Satisfy(hard clauses in L)
for i ← 1 to n

M ← ∅

for all (wk, ck) ∈ L satisfied by x(i−1)

With probability 1 − e−wk add ck to M

Sample x(i) ∼ USAT (M)

states SAT (M) that satisfy M . (Notice that SAT (M) is never empty, because
it always contains at least the current state.) Table 3 gives pseudo-code for MC-
SAT. US is the uniform distribution over set S. At each step, all hard clauses are
selected with probability 1, and thus all sampled states satisfy them. Negative
weights are handled by noting that a clause with weight w < 0 is equivalent
to its negation with weight −w, and a clause’s negation is the conjunction of
the negations of all of its literals. Thus, instead of checking whether the clause
is satisfied, we check whether its negation is satisfied; if it is, with probability
1−ew we select all of its negated literals, and with probability ew we select none.

It can be shown that MC-SAT satisfies the MCMC criteria of detailed balance
and ergodicity [28], assuming a perfect uniform sampler. In general, uniform
sampling is #P-hard and SampleSAT [44] only yields approximately uniform
samples. However, experiments show that MC-SAT is still able to produce very
accurate probability estimates, and its performance is not very sensitive to the
parameter setting of SampleSAT.

5.4 Scaling Up Inference

Lazy Inference One problem with the aforementioned approaches is that they
require propositionalizing the domain (i.e., grounding all atoms and clauses
in all possible ways), which consumes memory exponential in the arity of the
clauses. Lazy inference methods [38, 29] overcome this by only grounding atoms
and clauses as needed. This takes advantage of the sparseness of relational
domains, where most atoms are false and most clauses are trivially satisfied.
For example, in the domain of scientific research papers, most groundings of
the atom Author(person, paper) are false, and most groundings of the clause
Author(p1, paper) ∧ Author(p2, paper) ⇒ Coauthor(p1, p2) are trivially satis-
fied. With lazy inference, the memory cost does not scale with the number of
possible clause groundings, but only with the number of groundings that have
non-default values at some point in the inference.



We first describe a general approach for making inference algorithms lazy
and then show how it can be applied to create a lazy version of MaxWalkSAT.
We have also developed a lazy version of MC-SAT. Working implementations
of both algorithms are available in the Alchemy system. See Poon et al. [29] for
more details.

Our approach depends on the concept of “default” values that occur much
more frequently than others. In relational domains, the default is false for atoms
and true for clauses. In a domain where most variables assume the default value,
it is wasteful to allocate memory for all variables and functions in advance. The
basic idea is to allocate memory only for a small subset of “active” variables and
functions, and activate more if necessary as inference proceeds. In addition to
saving memory, this can reduce inference time as well, since we do not allocate
memory or compute values for functions that are never used.

Definition 2. Let X be the set of variables and D be their domain.6 The default
value d∗ ∈ D is the most frequent value of the variables. An evidence variable
is a variable whose value is given and fixed. A function f = f(z1, z2, · · · , zk)
inputs zi’s, which are either variables or functions, and outputs some value in
the range of f .

Although these methods can be applied to other inference algorithms, we
focus on relational domains. Variables are ground atoms, which take binary
values (i.e., D = {true, false}). The default value for variables is false (i.e.,
d∗ = false). Examples of functions are clauses and DeltaCost in MaxWalkSAT
(Table 2). Like variables, functions may also have default values (e.g., true for
clauses). The inputs to a relational inference algorithm are a weighted KB and a
set of evidence atoms (DB). Eager algorithms work by first carrying out propo-
sitionalization and then calling a propositional algorithm. In lazy inference, we
directly work on the KB and DB. The following concepts are crucial to lazy
inference.

Definition 3. A variable v is active iff v is set to a non-default value at some
point, and x is inactive if the value of x has always been d∗. A function f is
activated by a variable v if either v is an input of f , or v activates a function g
that is an input of f .

Let A be the eager algorithm that we want to make lazy. We make three
assumptions about A:

1. A updates one variable at a time. (If not, the extension is straightforward.)
2. The values of variables in A are properly encapsulated so that they can be

accessed by the rest of the algorithm only via two methods: ReadVar(x)
(which returns the value of x) and WriteVar(x, v) (which sets the value of x
to v). This is reasonable given the conventions in software development, and
if not, it is easy to implement.

6 For simplicity we assume that all variables have the same domain. The extension to
different domains is straightforward.



3. A always sets values of variables before calling a function that depends on
those variables, as it should be.

To develop the lazy version of A, we first identify the variables (usually all) and
functions to make lazy. We then modify the value-accessing methods and replace
the propositionalization step with lazy initialization as follows. The rest of the
algorithm remains the same.

ReadVar(x): If x is in memory, Lazy-A returns its value as A; otherwise, it
returns d∗.

WriteVar(x, v): If x is in memory, Lazy-A updates its value as A. If not, and
if v = d∗, no action is taken; otherwise, Lazy-A activates (allocates memory
for) x and the functions activated by x, and then sets the value.

Initialization: Lazy-A starts by allocating memory for the lazy functions that
output non-default values when all variables assume the default values. It
then calls WriteVar to set values for evidence variables, which activates those
evidence variables with non-default values and the functions they activate.
Such variables become the initial active variables and their values are fixed
throughout the inference.

Lazy-A carries out the same inference steps as A and produces the same
result. It never allocates memory for more variables/functions than A, but each
access incurs slightly more overhead (in checking whether a variable or func-
tion is in memory). In the worst case, most variables are updated, and Lazy-A
produces little savings. However, if the updates are sparse, as is the case for
most algorithms in relational domains, Lazy-A can greatly reduce memory and
time because it activates and computes the values for many fewer variables and
functions.

Applying this method to MaxWalkSAT is fairly straightforward: each ground
atom is a variable and each ground clause is a function to be made lazy. Follow-
ing Singla and Domingos [38], we refer to the resulting algorithm as LazySAT.
LazySAT initializes by activating true evidence atoms and initial unsatisfied
clauses (i.e., clauses which are unsatisfied when the true evidence atoms are set
to true and all other atoms are set to false).7 At each step in the search, the
atom that is flipped is activated, as are any clauses that by definition should
become active as a result. While computing DeltaCost(v), if v is active, the rel-
evant clauses are already in memory; otherwise, they will be activated when v
is set to true (a necessary step before computing the cost change when v is set
to true). Table 4 gives pseudocode for LazySAT.

Experiments in a number of domains show that LazySAT can yield very large
memory reductions, and these reductions increase with domain size [38]. For
domains whose full instantiations fit in memory, running time is comparable; as
problems become larger, full instantiation for MaxWalkSAT becomes impossible.

7 This differs from MaxWalkSAT, which assigns random values to all atoms. However,
the LazySAT initialization is a valid MaxWalkSAT initialization, and the two give
very similar results empirically. Given the same initialization, the two algorithms
will produce exactly the same results.



Table 4. Lazy variant of the MaxWalkSAT algorithm.

function LazySAT(KB, DB, tmax, fmax, target, p)
inputs: KB, a weighted knoweldge base

DB, database containing evidence
tmax, the maximum number of tries
fmax, the maximum number of flips
target, target solution cost
p, probability of taking a random step

output: soln, best variable assignment found

for i ← 1 to tmax

active atoms ← atoms in clauses not satisfied by DB

active clauses ← clauses activated by active atoms

soln ← a random truth assignment to active atoms

cost ← sum of weights of unsatisfied clauses in soln

for i ← 1 to fmax

if cost ≤ target

return “Success, solution is”, soln

c ← a randomly chosen unsatisfied clause
if Uniform(0,1) < p

vf ← a randomly chosen variable from c

else

for each variable v in c

compute DeltaCost(v), using KB if v 6∈ active atoms

vf ← v with lowest DeltaCost(v)

if vf 6∈ active atoms

add vf to active atoms

add clauses activated by vf to active clauses

soln ← soln with vf flipped
cost ← cost + DeltaCost(vf )

return “Failure, best assignment is”, best soln found



We have also used this method to implement a lazy version of MC-SAT that
avoids grounding unnecessary atoms and clauses [29].

Lifted Inference The inference methods discussed so far are purely proba-
bilistic in the sense that they propositionalize all atoms and clauses and apply
standard probabilistic inference algorithms. A key property of first-order logic is
that it allows lifted inference, where queries are answered without materializing
all the objects in the domain (e.g., resolution [34]). Lifted inference is potentially
much more efficient than propositionalized inference, and extending it to prob-
abilistic logical languages is a desirable goal. We have developed a lifted version
of loopy belief propagation (BP), building on the work of Jaimovich et al. [11].
Jaimovich et al. pointed out that, if there is no evidence, BP in probabilistic
logical models can be trivially lifted, because all groundings of the same atoms
and clauses become indistinguishable. Our approach proceeds by identifying the
subsets of atoms and clauses that remain indistinguishable even after evidence is
taken into account. We then form a network with supernodes and superfeatures
corresponding to these sets, and apply BP to it. This network can be vastly
smaller than the full ground network, with the corresponding efficiency gains.
Our algorithm produces the unique minimal lifted network for every inference
problem.

We begin with some necessary definitions. These assume the existence of an
MLN L, set of constants C, and evidence database E (set of ground literals).
For simplicity, our definitions and explanation of the algorithm will assume that
each predicate appears at most once in any given MLN clause. We will then
describe how to handle multiple occurrences of a predicate in a clause.

Definition 4. A supernode is a set of groundings of a predicate that all send
and receive the same messages at each step of belief propagation, given L, C and
E. The supernodes of a predicate form a partition of its groundings.

A superfeature is a set of groundings of a clause that all send and receive
the same messages at each step of belief propagation, given L, C and E. The
superfeatures of a clause form a partition of its groundings.

Definition 5. A lifted network is a factor graph composed of supernodes and
superfeatures. The factor corresponding to a superfeature g(x) is exp(wg(x)),
where w is the weight of the corresponding first-order clause. A supernode and a
superfeature have an edge between them iff some ground atom in the supernode
appears in some ground clause in the superfeature. Each edge has a positive
integer weight. A minimal lifted network is a lifted network with the smallest
possible number of supernodes and superfeatures.

The first step of lifted BP is to construct the minimal lifted network. The
size of this network is O(nm), where n is the number of supernodes and m the
number of superfeatures. In the best case, the lifted network has the same size
as the MLN L; in the worst case, as the ground Markov network ML,C .

The second and final step in lifted BP is to apply standard BP to the lifted
network, with two changes:



1. The message from supernode x to superfeature f becomes

µ
n(f,x)−1
f→x

∏

h∈nb(x)\{f}

µh→x(x)n(h,x)

where n(h, x) is the weight of the edge between h and x.
2. The (unnormalized) marginal of each supernode (and, therefore, of each

ground atom in it) is given by
∏

h∈nb(x) µ
n(h,x)
h→x (x).

The weight of an edge is the number of identical messages that would be sent from
the ground clauses in the superfeature to each ground atom in the supernode if
BP was carried out on the ground network. The n(f, x)−1 exponent reflects the
fact that a variable’s message to a factor excludes the factor’s message to the
variable.

The lifted network is constructed by (essentially) simulating BP and keeping
track of which ground atoms and clauses send the same messages. Initially, the
groundings of each predicate fall into three groups: known true, known false and
unknown. (One or two of these may be empty.) Each such group constitutes an
initial supernode. All groundings of a clause whose atoms have the same com-
bination of truth values (true, false or unknown) now send the same messages
to the ground atoms in them. In turn, all ground atoms that receive the same
number of messages from the superfeatures they appear in send the same mes-
sages, and constitute a new supernode. As the effect of the evidence propagates
through the network, finer and finer supernodes and superfeatures are created.

If a clause involves predicates R1, . . . , Rk, and N = (N1, . . . , Nk) is a corre-
sponding tuple of supernodes, the groundings of the clause generated by N are
found by joining N1, . . . , Nk (i.e., by forming the Cartesian product of the rela-
tions N1, . . . , Nk, and selecting the tuples in which the corresponding arguments
agree with each other, and with any corresponding constants in the first-order
clause). Conversely, the groundings of predicate Ri connected to elements of a
superfeature F are obtained by projecting F onto the arguments it shares with
Ri. Lifted network construction thus proceeds by alternating between two steps:

1. Form superfeatures by doing joins of their supernodes.
2. Form supernodes by projecting superfeatures down to their predicates, and

merging atoms with the same projection counts.

Pseudocode for the algorithm is shown in Table 5. The projection counts at
convergence are the weights associated with the corresponding edges.

To handle clauses with multiple occurrences of a predicate, we keep a tuple of
edge weights, one for each occurrence of the predicate in the clause. A message is
passed for each occurrence of the predicate, with the corresponding edge weight.
Similarly, when projecting superfeatures into supernodes, a separate count is
maintained for each occurrence, and only tuples with the same counts for all
occurrences are merged.

See Singla and Domingos [40] for additional details, including the proof that
this algorithm always creates the minimal lifted network.



Table 5. Lifted network construction algorithm.

function LNC(L, C, E)
inputs: L, a Markov logic network

C, a set of constants
E, a set of ground literals

output: M , a lifted network
for each predicate P

for each truth value t in {true, false, unknown}
form a supernode containing all groundings of P with truth value t

repeat

for each clause involving predicates P1, . . . , Pk

for each tuple of supernodes (N1, . . . , Nk),
where Ni is a Pi supernode
form a superfeature F by joining N1, . . . , Nk

for each predicate P

for each superfeature F it appears in
S(P, F ) ← projection of the tuples in F down to the variables in P

for each tuple s in S(P, F )
T (s, F ) ← number of F ’s tuples that were projected into s

S(P ) ←
S

F S(P, F )
form a new supernode from each set of tuples in S(P ) with the

same T (s, F ) counts for all F

until convergence
add all current supernodes and superfeatures to M

for each supernode N and superfeature F in M

add to M an edge between N and F with weight T (s, F )
return M



6 Learning

In this section, we discuss methods for automatically learning weights, refining
formulas, and constructing new formulas from data.

6.1 Markov Network Learning

Maximum-likelihood or MAP estimates of Markov network weights cannot be
computed in closed form but, because the log-likelihood is a concave function
of the weights, they can be found efficiently (modulo inference) using standard
gradient-based or quasi-Newton optimization methods [26]. Another alternative
is iterative scaling [6]. Features can also be learned from data, for example by
greedily constructing conjunctions of atomic features [6].

6.2 Generative Weight Learning

MLN weights can be learned generatively by maximizing the likelihood of a
relational database (Equation 3). This relational database consists of one or
more “possible worlds” that form our training examples. Note that we can learn
to generalize from even a single example because the clause weights are shared
across their many respective groundings. This is essential when the training
data is a single network, such as the Web. The gradient of the log-likelihood
with respect to the weights is

∂

∂wi

log Pw(X =x) = ni(x) −
∑

x′

Pw(X =x′) ni(x
′) (6)

where the sum is over all possible databases x′, and Pw(X = x′) is P (X =
x′) computed using the current weight vector w = (w1, . . . , wi, . . .). In other
words, the ith component of the gradient is simply the difference between the
number of true groundings of the ith formula in the data and its expectation
according to the current model. In the generative case, even approximating these
expectations tends to be prohibitively expensive or inaccurate due to the large
state space. Instead, we can maximize the pseudo-likelihood of the data, a widely-
used alternative [1]. If x is a possible world (relational database) and xl is the
lth ground atom’s truth value, the pseudo-log-likelihood of x given weights w is

log P ∗
w(X =x) =

n
∑

l=1

log Pw(Xl =xl|MBx(Xl)) (7)

where MBx(Xl) is the state of Xl’s Markov blanket in the data (i.e., the truth
values of the ground atoms it appears in some ground formula with). Computing
the pseudo-likelihood and its gradient does not require inference, and is there-
fore much faster. Combined with the L-BFGS optimizer [19], pseudo-likelihood
yields efficient learning of MLN weights even in domains with millions of ground



atoms [32]. However, the pseudo-likelihood parameters may lead to poor results
when long chains of inference are required.

In order to reduce overfitting, we penalize each weight with a Gaussian prior.
We apply this strategy not only to generative learning, but to all of our weight
learning methods, even those embedded within structure learning.

6.3 Discriminative Weight Learning

Discriminative learning is an attractive alternative to pseudo-likelihood. In many
applications, we know a priori which atoms will be evidence and which ones will
be queried, and the goal is to correctly predict the latter given the former. If we
partition the ground atoms in the domain into a set of evidence atoms X and a
set of query atoms Y , the conditional likelihood of Y given X is

P (y|x) =
1

Zx

exp

(

∑

i∈FY

wini(x, y)

)

=
1

Zx

exp





∑

j∈GY

wjgj(x, y)



 (8)

where FY is the set of all MLN clauses with at least one grounding involving a
query atom, ni(x, y) is the number of true groundings of the ith clause involving
query atoms, GY is the set of ground clauses in ML,C involving query atoms,
and gj(x, y) = 1 if the jth ground clause is true in the data and 0 otherwise.
The gradient of the conditional log-likelihood is

∂

∂wi

log Pw(y|x) = ni(x, y) −
∑

y′

Pw(y′|x)ni(x, y′)

= ni(x, y) − Ew[ni(x, y)] (9)

In the conditional case, we can approximate the expected counts Ew[ni(x, y)]
using either the MAP state (i.e., the most probable state of y given x) or by
averaging over several MC-SAT samples. The MAP approximation is inspired
by the voted perceptron algorithm proposed by Collins [2] for discriminatively
laerning hidden Markov models. We can apply a similar algorithm to MLNs using
MaxWalkSAT to find the approximate MAP state, following the approximate
gradient for a fixed number of iterations, and averaging the weights across all it-
erations to combat overfitting [36]. We get the best results, however, by applying
a version of the scaled conjugate gradient algorithm [24]. We use a small number
of MC-SAT samples to approximate the gradient and Hessian matrix, and use
the inverse diagonal Hessian as a preconditioner. See Lowd and Domingos [21]
for more details and results.

6.4 Structure Learning and Clustering

The structure of a Markov logic network is the set of formulas or clauses to
which we attach weights. While these formulas are often specified by one or
more experts, such knowledge is not always accurate or complete. In addition



to learning weights for the provided clauses, we can revise or extend the MLN
structure with new clauses learned from data. We can also learn the entire struc-
ture from scratch. The problem of discovering MLN structure is closely related
to the problem of finding frequent subgraphs in graphs. Intuitively, frequent
subgraphs correspond to high-probability patterns in the graph, and an MLN
modeling the domain should contain formulas describing them, with the corre-
sponding weights (unless a subgraph’s probability is already well predicted by
the probabilities of its subcomponents, in which case the latter suffice). More
generally, MLN structure learning involves discovering patterns in hypergraphs,
in the form of logical rules. The inductive logic programming (ILP) community
has developed many methods for this purpose. ILP algorithms typically search
for rules that have high accuracy, high coverage, etc. However, since an MLN
represents a probability distribution, much better results are obtained by using
an evaluation function based on pseudo-likelihood [13]. Log-likelihood or con-
ditional log-likelihood are potentially better evaluation functions, but are much
more expensive to compute. In experiments on two real-world datasets, our MLN
structure learning algorithm found better MLN rules than the standard ILP al-
gorithms CLAUDIEN [5], FOIL [30], and Aleph [41], and than a hand-written
knowledge base.

MLN structure learning can start from an empty network or from an existing
KB. Either way, we have found it useful to start by adding all unit clauses
(single atoms) to the MLN. The weights of these capture (roughly speaking)
the marginal distributions of the atoms, allowing the longer clauses to focus on
modeling atom dependencies. To extend this initial model, we either repeatedly
find the best clause using beam search and add it to the MLN, or add all “good”
clauses of length l before trying clauses of length l + 1. Candidate clauses are
formed by adding each predicate (negated or otherwise) to each current clause,
with all possible combinations of variables, subject to the constraint that at least
one variable in the new predicate must appear in the current clause. Hand-coded
clauses are also modified by removing predicates.

Recently, Mihalkova and Mooney [23] introduced BUSL, an alternative, bot-
tom-up structure learning algorithm for Markov logic. Instead of blindly con-
structing candidate clauses one literal at a time, they let the training data guide
and constrain clause construction. First, they use a propositional Markov net-
work structure learner to generate a graph of relationships among atoms. Then
they generate clauses from paths in this graph. In this way, BUSL focuses on
clauses that have support in the training data. In experiments on three datasets,
BUSL evaluated many fewer candidate clauses than our top-down algorithm,
ran more quickly, and learned more accurate models.

Another key problem in MLN learning is discovering hidden variables (or
inventing predicates, in the language of ILP). Link-based clustering is a special
case of this, where the hidden variables are the clusters. We have developed a
number of approaches for this problem, and for discovering structure over the
hidden variables [14–16]. The key idea is to cluster together objects that have
similar relations to similar objects, cluster relations that relate similar objects,



and recursively repeat this until convergence. This can be a remarkably effective
approach for cleaning up and structuring a large collection of noisy linked data.
For example, the SNE algorithm is able to discover thousands of clusters over
millions of tuples extracted from the Web and form a semantic network from
them in a few hours.

7 Applications

Markov logic has been applied to a wide variety of link mining problems, in-
cluding link prediction (predicting academic advisors of graduate students [32]),
record linkage (matching bibliographic citations [37]), link-based clustering (ex-
tracting semantic networks from the Web [15]), and many others. (See the repos-
itory of publications on the Alchemy Web site (alchemy.cs.washington.edu) for
a partial list.) In this section we will discuss two illustrative examples: collective
classification of Web pages and optimizing word of mouth in social networks
(a.k.a. viral marketing).

7.1 Collective Classification

Collective classification is the task of inferring labels for a set of objects using
their links as well as their attributes. For example, Web pages that link to each
other tend to have similar topics. Since the labels now depend on each other, they
must be inferred jointly rather than independently. In Markov logic, collective
classification models can be specified with just a few formulas and applied using
standard Markov logic algorithms. We demonstrate this on WebKB, one of the
classic collective classification datasets [3].

WebKB consists of labeled Web pages from the computer science depart-
ments of four universities. We used the relational version of the dataset from
Craven and Slattery [3], which features 4165 Web pages and 10,935 Web links.
Each Web page is marked with one of the following categories: student, faculty,
professor, department, research project, course, or other. The goal is to predict
these categories from the Web pages’ words and links.

We can start with a simple logistic regression model, using only the words
on the Web pages:

PageClass(p,+c)
Has(p,+w) ⇒ PageClass(p,+c)

The ‘+’ notation is a shorthand for a set of rules with the same structure but
different weights: the MLN contains a rule and the corresponding weight for each
possible instantiation of the variables with a ‘+’ sign. The first line, therefore,
generates a unit clause for each class, capturing the prior distribution over page
classes. The second line generates thousands of rules representing the relationship
between each word and each class. We can encode the fact that classes are
mutually exclusive and exhaustive with a set of hard (infinite-weight) constraints:

PageClass(p,+c1) ∧ (+c1 6= +c2) ⇒ ¬PageClass(p,+c2)
∃c PageClass(p, c)



In Alchemy, we can instead state this property of the PageClass predicate in
its definition using the ‘!’ operator: PageClass(page, class!), where page and
class are type names. (In general, the ‘!’ notation signifies that, for each pos-
sible combination of values of the arguments without ‘!’, there is exactly one
combination of the arguments with ‘!’ for which the predicate is true.)

To turn this multi-class logistic regression into a collective classification
model with joint inference, we only need one more formula:

Linked(u1, u2) ∧ PageClass(+c1, u1) ∧ PageClass(+c2, u2)

This says that linked Web pages have related classes.
We performed leave-one-out cross-validation, training these models for 500

iterations of scaled conjugate gradient with a preconditioner. The logistic re-
gression baseline had an accuracy of 70.9%, while the model with joint inference
had an accuracy of 76.4%. Markov logic makes it easy to construct additional
features as well, such as words on linked pages, anchor text, etc. (See Taskar et
al. [42] for a similar approach using relational Markov networks.)

7.2 Viral Marketing

Viral marketing is based on the premise that members of a social network in-
fluence each other’s purchasing decisions. The goal is then to select the best set
of people to market to, such that the overall profit is maximized by propaga-
tion of influence through the network. Originally formalized by Domingos and
Richardson [8], this problem has since received much attention, including both
empirical and theoretical results.

A standard dataset in this area is the Epinions web of trust [31]. Epinions.com
is a knowledge-sharing Web site that allows users to post and read reviews of
products. The “web of trust” is formed by allowing users to maintain a list
of peers whose opinions they trust. We used this network, containing 75,888
users and over 500,000 directed edges, in our experiments. With over 75,000
action nodes, this is a very large decision problem, and no general-purpose utility
maximization algorithms have previously been applied to it (only domain-specific
implementations).

We modeled this problem as an MLDN (Markov logic decision network) using
the predicates Buys(x) (person x purchases the item), Trusts(x1, x2) (person x1

trusts person x2), and MarketTo(x) (x is targeted for marketing). MarketTo(x)
is an action predicate, since it can be manipulated directly, whereas Buys(x)
and Trusts(x1, x2) are state predicates, since they cannot. The utility function
is represented by the unit clauses Buys(x) (with positive utility, representing
profits from sales) and MarketTo(x) (with negative utility, representing the cost
of marketing). The topology of the social network is specified by an evidence
database of Trusts(x1, x2) atoms.

The core of the model consists of two formulas:

Buys(x1) ∧ Trusts(x2, x1) ⇒ Buys(x2)

MarketTo(+x) ⇒ Buys(x)



The weight of the first formula represents how strongly x1 influences x2, and
the weight of the second formula represents how strongly users are influenced
by marketing. In addition, the model includes the unit clause Buys(x) with a
negative weight, representing the fact that most users do not buy most products.
The final model is very similar to that of Domingos and Richardson [8] and yields
comparable results, but Markov logic makes it much easier to specify. Unlike
previous hand-coded models, our MLDN can be easily extended to incorporate
customer and product attributes, purchase history information, multiple types
of relationships, products, actors in the network, marketing actions, etc. Doing
so is a direction for future work. See Nath and Domingos [25] for additional
details.

8 The Alchemy System

The inference and learning algorithms described in the previous sections are pub-
licly available in the open-source Alchemy system [17]. Alchemy makes it possible
to define sophisticated probabilistic models over relational domains with a few
formulas, learn them from data, and use them for prediction, understanding, etc.
From the user’s point of view, Alchemy makes it easier and quicker to develop
link-mining applications by taking advantage of the Markov logic language and
the existing library of algorithms for it. From the researcher’s point of view,
Alchemy makes it possible to easily integrate new algorithms with a full comple-
ment of other algorithms that support them or make use of them, and to make
the new algorithms available for a wide variety of applications without having
to target each one individually.

Alchemy can be viewed as a declarative programming language akin to Pro-
log, but with a number of key differences: the underlying inference mechanism
is model checking instead of theorem proving; the full syntax of first-order logic
is allowed, rather than just Horn clauses; and, most importantly, the ability
to handle uncertainty and learn from data is already built in. Table 6 com-
pares Alchemy with Prolog and BUGS [22], one of the most popular toolkits for
Bayesian modeling and inference.

Table 6. A comparison of Alchemy, Prolog and BUGS.

Aspect Alchemy Prolog BUGS

Representation First-order logic + Markov nets Horn clauses Bayes nets
Inference SAT, MCMC, lifted BP Theorem proving MCMC
Learning Parameters and structure No Parameters
Uncertainty Yes No Yes
Relational Yes Yes No



9 Conclusion and Directions for Future Research

Markov logic offers a simple yet powerful representation for link mining prob-
lems. Since it generalizes first-order logic, Markov logic can easily model the full
relational structure of link mining problems, including multiple relations and
attributes of different types and arities, relational concepts such as transitivity,
and background knowledge in first-order logic. And since it generalizes proba-
bilistic graphical models, Markov logic can efficiently represent uncertainty in
the attributes, links, cluster memberships, etc. required by most link mining
applications.

The specification of standard link mining problems in Markov logic is remark-
ably compact, and the open-source Alchemy system (available at alchemy.cs.wa-
shington.edu) provides a powerful set of algorithms for solving them. We hope
that Markov logic and Alchemy will be of use to link mining researchers and
practitioners who wish to have the full spectrum of logical and statistical infer-
ence and learning techniques at their disposal, without having to develop every
piece themselves. More details on Markov logic and its applications can be found
in Domingos and Lowd [7].

Directions for future research in Markov logic include further increasing the
scalability, robustness and ease of use of the algorithms, applying it to new link
mining problems, developing new capabilities, etc.
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