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Abstract

In recent years, many representations have
been proposed that combine graphical mod-
els with aspects of first-order logic, along
with learning and inference algorithms for
them. However, the problem of extending
decision theory to these representations re-
mains largely unaddressed. In this paper, we
propose a framework for relational decision
theory based on Markov logic, which treats
weighted first-order clauses as templates for
features of Markov networks. By allowing
clauses to have utility weights as well as prob-
ability weights, very rich utility functions can
be represented. In particular, both classical
planning and Markov decision processes are
special cases of this framework.

1. Introduction

Intelligent agents must be able to handle the com-
plexity and uncertainty of the real world. First-order
logic is useful for the first, and probability for the sec-
ond. Combining the two has been the focus of much
recent research (Getoor & Taskar, 2007). However,
there is little work to date on extending these repre-
sentations to the decision-theoretic setting, which is
needed to allow agents to intelligently choose actions.
The one major exception is relational reinforcement
learning and first-order MDPs. (e.g., Džeroski and De
Raedt (1998); van Otterlo (2005); Sanner (2008) ).
However, the representations and algorithms in these
approaches are geared to the problem of sequential
decision-making, and many decision-theoretic prob-
lems are not sequential. In particular, relational do-
mains often lead to very large and complex decision
problems for which no effective general solution is cur-
rently available (e.g., influence maximization in social
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networks, combinatorial auctions with uncertain sup-
plies, etc.).

The goal of this paper is thus to provide a general
decision-theoretic extension of first-order probabilis-
tic representations. Our starting point is Markov
logic, one of the most powerful representations avail-
able (Richardson & Domingos, 2006). We extend it to
represent decision-theoretic problems.

2. Background

2.1. Markov Networks and Decision Theory

Graphical models compactly represent the joint distri-
bution of a set of variables X = (X1, X2, . . . , Xn) ∈ X
as a product of factors (Pearl, 1988): P (X=x) =
1

Z

∏
k φk(xk), where each factor φk is a non-negative

function of a subset of the variables xk, and Z is a nor-
malization constant. Under appropriate restrictions,
the model is a Bayesian network and Z = 1. A Markov
network or Markov random field can have arbitrary fac-
tors. Graphical models can also be represented in log-
linear form: P (X=x) = 1

Z
exp (

∑
i wigi(x)), where

the features gi(x) are arbitrary functions of the state.

A key inference task in graphical models is comput-
ing the marginal probabilities of some variables (the
query) given the values of some others (the evidence).
This problem is #P-complete, but can be solved ap-
proximately using algorithms such as loopy belief prop-
agation (BP).

An influence diagram or decision network is a graph-
ical representation of a decision problem (Howard &
Matheson, 2005). It consists of a Bayesian network
augmented with two types of nodes: decision or ac-
tion nodes and utility nodes. The action nodes repre-
sent the agent’s choices; factors involving these nodes
and state nodes in the Bayesian network represent the
(probabilistic) effect of the actions on the world. Util-
ity nodes represent the agent’s utility function, and are
connected to the state nodes that directly influence
utility. We can also define a Markov decision network
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as a decision network with a Markov network instead
of a Bayesian network.

The fundamental inference problem in decision net-
works is finding the assignment of values to the ac-
tion nodes that maximizes the agent’s expected util-
ity, possibly conditioned on some evidence. If a is a
choice of actions, e is the evidence, x is a state, and
U(x|a, e) is the utility of x given a and e, then the
MEU problem is to compute argmax

a
E[U(x|a, e)] =

argmax
a

∑
x

P (x|a, e)U(x|a, e).

2.2. Markov Logic

Markov logic is a probabilistic extension of first-order
logic. Formulas in first-order logic are constructed
from logical connectives, predicates, constants, vari-
ables and functions. A grounding of a predicate (or
ground atom) is a replacement of all its arguments by
constants (or, more generally, ground terms). Simi-
larly, a grounding of a formula is a replacement of all
its variables by constants. A possible world is an as-
signment of truth values to all possible groundings of
predicates.

A Markov logic network (MLN) is a set of weighted
first-order formulas. Together with a set of constants,
it defines a Markov network with one node per ground
atom and one feature per ground formula. The weight
of a feature is the weight of the first-order formula
that originated it. The probability distribution over
possible worlds x specified by the MLN and constants
is thus P (x) = 1

Z
exp(

∑
i wini(x)), where wi is the

weight of the ith formula and ni(x) its number of true
groundings in x.

3. Markov Logic Decision Networks

Decision theory can be incorporated into Markov logic
simply by allowing formulas to have utilities as well
as weights. This puts the expressiveness of first-order
logic at our disposal for defining utility functions, at
the cost of very little additional complexity in the lan-
guage. Let an action predicate be a predicate whose
groundings correspond to possible actions (choices, de-
cisions) by the agent, and a state predicate be any pred-
icate in a standard MLN. Formally:

Definition A Markov logic decision network (MLDN)
L is a set of triples (Fi, wi, ui), where Fi is a for-
mula in first-order logic and wi and ui are real num-
bers. Together with a finite set of constants C =
{c1, c2, . . . , c|C|}, it defines a Markov decision network
ML,C as follows:

1. ML,C contains one binary node for each possible
grounding of each state and action predicate ap-

pearing in L. The value of the node is 1 if the
ground atom is true, and 0 otherwise.

2. ML,C contains one feature for each possible
grounding of each formula Fi in L for which
wi 6= 0. The value of this feature is 1 if the ground
formula is true, and 0 otherwise. The weight of
the feature is the wi associated with Fi in L.

3. ML,C contains one utility node for each possi-
ble grounding of each formula Fi in L for which
ui 6= 0. The value of the node is the utility ui

associated with Fi in L if Fi is true, and 0 other-
wise.

We refer to groundings of action predicates as ac-
tion atoms, and groundings of state predicates as state
atoms. An assignment of truth values to all action
atoms is an action choice. An assignment of truth val-
ues to all state atoms is a state of the world or possible
world. The utility of world x given action choice a and
evidence e is U(x|a, e) =

∑
i uini(x,a, e), where ni is

the number of true groundings of Fi. The expected
utility of action choice a given evidence e is:

E[U(x|a, e)] =
∑

x

P (x|a, e)
∑

i

uini(x,a, e)

=
∑

i

uiE[ni]

The MEU problem in MLDNs is finding the action
choice that maximizes expected utility, and is obvi-
ously intractable. We have developed expanding fron-
tier belief propagation (Nath & Domingos, 2009), an
efficient, approximate MEU algorithm for MLDNs.
EFBP searches the space of action choices, computing
the expected utility for each one using a variant of BP
that only recomputes beliefs for portions of the net-
work that have changed since the last search step. Ex-
periments on multiple domains have shown that EFBP
is much faster than running the same algorithm with
standard BP at each search step, and produces results
of very similar utility.

A wide range of decision problems can be elegantly
formulated as MLDNs, including both classical plan-
ning and Markov decision processes (MDPs). To rep-
resent an MDP as an MLDN, we can define a constant
for each state, action and time step, and the predi-
cates State(s!, t) and Action(a!, t), with the obvious
meaning. (The ! notation indicates that, for each t,
exactly one grounding of State(s, t) is true.) The
transition function is then represented by the formula
State(+s, t) ∧ Action(+a, t) ⇒ State(+s′, t + 1),
with a separate weight for each (s, a, s′) triple. (For-
mulas with + signs before certain variables represent
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sets of identical formulas with separate weights, one for
each combination of groundings of the variables with
+ signs.) The reward function is defined by the unit
clause State(∗s, t), with a utility for each state (using
∗ to represent per-grounding utilities). Policies can be
represented by formulas of the form State(+s, t) ⇒
Action(+a, t). Infinite-horizon MDPs can be rep-
resented using infinite MLNs (Singla & Domingos,
2007). Partially-observable MDPs are represented
by adding the observation model: State(+s, t) ⇒
Observation(+o, t).

Since classical planning languages are variants of first-
order logic, translating problems formulated in these
languages into MLDNs is straightforward. For simplic-
ity, suppose the problem has been expressed in satisfi-
ability form (Kautz & Selman, 1992). It suffices then
to translate the (first-order) CNF into a deterministic
MLN by assigning infinite weight to all clauses, and
to assign a positive utility to the formula defining the
goal states. MLDNs now offer a path to extend classi-
cal planning with uncertain actions, complex utilities,
etc., by assigning finite weights and utilities to formu-
las. (For example, an action with uncertain effects can
be represented by assigning a finite weight to the ax-
iom that defines them.) This can be used to represent
first-order MDPs in a manner analogous to Boutilier
et al. (2001).

4. Application to Viral Marketing

Viral marketing (Domingos & Richardson, 2001) is
based on the premise that members of a social net-
work influence each other’s purchasing decisions. The
goal is then to select the best set of people to market
to, such that the overall profit is maximized by propa-
gation of influence through the network. We modeled
this problem using the state predicates Buys(x) and
Trusts(x1, x2), and the action predicate MarketTo(x).
The utility function is represented by the unit clauses
Buys(x) (with positive utility, representing profits from
sales) and MarketTo(x) (with negative utility, repre-
senting the cost of marketing). The topology of the
social network is specified by an evidence database of
Trusts(x1, x2) atoms.

The core of the model consists of two formulas:

Buys(+x1) ∧ Trusts(+x2, x1) ⇒ Buys(x2) (1)

MarketTo(+x) ⇒ Buys(x) (2)

In addition, the model includes the unit clause Buys(x)
with a negative weight, representing the fact that most
users do not buy most products. The weight of For-
mula 1 represents how strongly x1 influences x2, and
the weight of Formula 2 represents how strongly users
are influenced by marketing. In experiments with

this model on a large (75,000 user) real-world dataset,
EFBP performed competitively with previous domain-
specific solutions using similar models.

5. Conclusion

Markov logic decision networks represent first-order
probabilistic decision-theoretic problems by adding
utility weights to Markov logic formulas.

Directions for future work include developing other al-
gorithms for MEU inference, including algorithms for
specific problems such as planning; using MLDNs for
utility-guided learning, including relational reinforce-
ment learning; etc.
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