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Abstract
Three important generalizations of the basic clus-
tering problem are relational, hierarchical, and
multiple clustering. This paper proposes the first
approach to clustering that unifies all three. We
describe a general probabilistic model for rela-
tional clustering, and show that flat, hierarchical
and multiple relational clustering models are spe-
cial cases. This paper also describes an efficient
search algorithm for learning multiple hierarchi-
cal clusterings. A preliminary empirical evalua-
tion shows the promise of our approach.

1. Introduction
In recent years, relational clustering has been successfully
used to learn simple models of complex domains, both for
human interpretability and to make predictions about un-
observed relations. Most existing approaches to relational
clustering learn flat clusterings, grouping together similar
objects in a relational database. However, in complex re-
lational domains, a flat clustering is often an excessively
simplistic model of the data. Different properties of the
same objects may be best explained by different partitions
of the objects. Some attributes and relations may be best
modeled with a coarser or finer clustering than others. Mul-
tiple clustering and hierarchical clustering have been previ-
ously studied in isolation, by Kok & Domingos (2007) and
Roy et al. (2007) respectively. In this paper, we present
the first unified model for multiple hierarchical relational
clusterings. Each atom in the database is predicted by the
hierarchical clustering that best explains it. Within each
clustering, each prediction takes into account information
at multiple levels of the hierarchy, using shrinkage to learn
more robust parameters.

This line of work was inspired by Kemp et al.’s (2006) Infi-
nite Relational Model (IRM), which jointly clusters objects
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and predicates in a relational database. Given the cluster
assignments, the truth value of an atom can be predicted
from the cluster combination the atom belongs to (i.e., the
vector of cluster assignments of the predicate and objects
associated with the atom).

Building on this idea, Kok & Domingos’ (2007) Multiple
Relational Clustering (MRC) learned several cross-cutting
clusterings of a domain, rather than trying to explain a
database from a single clustering. The rationale is that
different clusterings may be better for predicting different
subsets of the atoms; it may not be possible to learn a single
clustering that satisfactorily explains the entire database.
Kok & Domingos empirically demonstrated that learning
multiple clusterings can greatly improve prediction quality.

One limitation of IRM and MRC is that both models learn
flat clusterings rather than hierarchical models. Hierar-
chical models can be useful both for human interpretabil-
ity and for improving predictive performance. Roy et al.
(2007) proposed a generative model for annotated hierar-
chies of relational data, where objects are hierarchically
clustered into a single tree, and each predicate is associ-
ated with the tree-consistent partition of objects that best
explains it. We refer to their system as the Annotated Hi-
erarchy Model (AHM). The motivation for this system was
twofold: (i) to learn compact, interpretable structures suit-
able for data analysis, and (ii) to provide a model of human
learning. However, its capabilities as a predictive model
were not investigated.

The rest of this paper is organized as follows. In section 2,
we describe a unified model for multiple hierarchical rela-
tional clustering. In section 3, we describe an efficient algo-
rithm for learning the weights and structure of the model.
Section 4 describes a preliminary empirical evaluation of
the single-hierarchy version of the algorithm. Finally, sec-
tion 5 lists directions for future work.

2. Model
We start with a standard Naive Bayes mixture model, and
then describe a series of extensions capturing relational, hi-
erarchical and multiple clustering models.
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2.1. Naive Bayes Mixture Model

A Naive Bayes mixture model assumes that an object’s at-
tributes (X1, . . . , Xa) are independent given the object’s
class, C. The joint probability is simply:

P (C,X1, . . . , Xa) = P (C)
a∏

i=1

P (Xi|C) (1)

2.2. Hierarchical Clustering Model

Hierachical models allow more robust predictions through
the use of shrinkage (McCallum et al., 1998), a statistical
technique that smoothes parameter estimates of data-sparse
feature towards their more data-rich ancestors in the hierar-
chy.

We define (D(1), . . . ,D(h)), whereD(i) is the set of cluster
symbols {c(i)1 , . . . , c

(i)
k } in the ith level of the hierarchy.

Each cluster c(i)j with 1 ≤ i < h has a parent cluster ρ(c(i)j )
in layer D(i+1).

The model contains one cluster assignment variable C(i)

for each level i in the hierarchy. D(i) is the set of possible
values for C(i). If C(i) = c, then C(i+1) = ρ(c); this
ensures that the cluster assignments are consistent with the
hierarchy structure.

The cluster assignments are generated top-down; C(h) is
generated from a multinomial distribution over the sym-
bols in D(h). For the finer layers, cluster memberships are
generated from a multinomial distribution over a set of sib-
lings, i.e. clusters that share the same parent. P (c) is the
multinomial parameter corresponding to cluster c.

The attributes are generated conditioned on the vector of
cluster assignments for the object. The distribution for each
attribute is a log-linear model, with one feature for each
level in the hierarchy:

P (Xj |C(1), . . . , C(h)) =
1

1 + exp
(
−
∑h

i=1 w
(j)

C(i)

)
The full joint probability distribution is:

P (C,X) =
h∏

i=1

P (C(i))

∏
Xj∈X+

1

1 + exp
(
−
∑h

i=1 w
(j)

C(i)

)
∏

Xj∈X−

1

1 + exp
(∑h

i=1 w
(j)

C(i)

)
(2)

Where C = (C(1), . . . , C(h)); X = (X1, . . . , Xa); X+

and X− are respectively the sets of true and false attributes
in X.

2.3. Relational Clustering Model

Relational models such as the stochastic blockmodel (Hol-
land et al., 1983; Nowicki & Snijders, 2001) jointly clus-
ter a set of object and predicate symbols {o1, . . . , on}
based on their relations. The traditional blockmodel for-
mulation draws the cluster memberships from a multi-
nomial distribution with a fixed number of components,
k. Let {c1, . . . , ck} be the cluster symbols. Let C =
(C1, . . . , Cn) be the vector of cluster membership variables
for the n object and predicate symbols (i.e., Ci = cj means
that item oi is assigned to cluster cj). The probability of
cluster assignment C is:

P (C) =
n∏

i=1

P (Ci) =
k∏

j=1

P (ck)|ck|

(Here, P (ck) is the probability of component ck in the
multinomial, and |ck| is the number of items assigned to
component ck.)

Each atom is then generated conditioned on the vector of
cluster assignments of the items in the relation:

X = or(o1, . . . , op) ∼ Bernoulli(η(Cr, C1, . . . , Cp))

We refer to a vector of cluster assignments as a cluster com-
bination. Let MX be the cluster combination that explains
atom X as described above, and let ηMX

be the parameter
of the corresponding Bernoulli distribution. X is the set
of atoms in the domain; X+ and X− are respectively the
sets of true and false atoms in X. The full joint probability
distribution is:

P (C,X) =
k∏

j=1

P (ck)|ck|
∏

X∈X+

ηMX

∏
X∈X−

(1− ηMX
)

(3)
Note that the number of components need not be fixed
in advance; IRM generates the clusters using a Chinese
Restaurant Process (Pitman, 2002), allowing the data to
dictate the number of components.

2.4. Hierarchical Relational Clustering Model

In this section, we describe a hierarchical relational clus-
tering model that generalizes stochastic blockmodels much
like the model in section 2.2 extends Naive Bayes mix-
ture models. The hierarchical model contains a vector
of cluster assignments for each level i in the hierarchy:
C(i) = (C(i)

1 , . . . , C
(i)
n ). The full hierarchical clustering

is defined by the matrix C = (C(1), . . . ,C(h)), each row
of which captures the cluster assignments in one level of
the hierarchy.

As in section 2.2, each cluster c(i)j has a parent in the layer
above, and each cluster membership is generated from a
multinomial distribution over a set of siblings.
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As in section 2.3, the atoms are generated conditioned on
the cluster memberships of their predicate and object sym-
bols. For each atomX = or(o1, . . . , op), let cluster combi-
nation M (i)

X = (C(i)
r , C

(i)
1 , . . . , C

(i)
p ) be the vector of clus-

ter assignments of the symbols in X , in level i of the hi-
erarchy. X is generated from a log-linear model with one
feature for each cluster combination that explains it:

P (X|C) =
1

1 + exp
(
−
∑h

i=1 wM
(i)
X

)
wM is the weight of the feature corresponding to cluster
combination M . The model can be straightforwardly ex-
tended to include cross-level features, but we assume in
this paper that all clusters in a cluster combination come
from the same level in the hierarchy.

The full joint probability distribution is:

P (C,X) =

 h∏
i=1

∏
ck∈D(i)

P (ck)|ck|


∏

X∈X+

1

1 + exp
(
−
∑h

i=1 wM
(i)
X

)
∏

X∈X−

1

1 + exp
(∑h

i=1 wM
(i)
X

)
(4)

There are several differences between our hierarchical
model (HRC) and Roy et al.’s AHM. Their system does
not incorporate any form of predicate clustering, which is
important in domains with a large number of predicates.
AHM learns the single tree-consistent partition of objects
that best explains each predicate, while our model makes
the prediction jointly over the entire hierarchy. A form
of shrinkage can be achieved within the AHM framework,
by marginalizing over tree-consistent partitions. However,
HRC achieves shrinkage even when we just use the MAP
hypothesis, which is advantageous both for computational
reasons and for human interpretability. Another difference
is that HRC allows a node to have an arbitrary number
of children, allowing us to represent more compact, inter-
pretable trees (sometimes referred to as rose trees, Blundell
et al., 2011).

2.5. Multiple Hierarchical Relational Clustering Model

There are two alternative approaches to unifying hierarchi-
cal clustering with multiple clustering: the model could
consist of multiple hierarchical clusterings, or a hierarchy
of multiple-clustering models. The model we describe in
this section takes the former approach.

A hierarchical clustering C(·,j) = (C(1,j), . . .C(hj ,j)) is
a matrix of cluster assignment variables (as in section 2.4).

C(i,j) = (C(i,j)
1 , . . . , C

(i,j)
n ) represents the cluster assign-

ments of the n items in level i of the jth hierarchical clus-
tering. hj is the number of levels in the jth clustering. The
complete set of cluster assignments in the model is defined
by the 3-dimensional tensor C = {C(·,1), . . . ,C(·,m)},
which represents m hierarchical clusterings.

To allow different clusterings to model different subsets of
the objects and predicates, the model contains a matrix of
indicator variables O; when O(·,j)

i = 1, we say that clus-
tering j contains item oi. For notational convenience, we
also define N (·,j)

X ; this indicator variable has a value of 1
iff O(·,j)

i = 1 for all of X’s arguments oi. When this is the
case, we say that clustering j contains atom X .

The cluster memberships in hierarchical clusterings are
generated from multinomials, as in sections 2.2 and 2.4.
As in the previous section, the atoms are generated condi-
tioned on the cluster assignments using a log-linear model
with one feature per cluster combination. The only differ-
ence is that we now need to include features from all of the
hierarchical clusterings that contain each atom:

P (C,X) =

 m∏
j=1

hj∏
i=1

∏
ck∈D(i,j)

P (ck)|ck|


∏

X∈X+

1

1 + exp
(
−
∑m

j=1N
(·,j)
X

∑hj

i=1 wM
(i,j)
X

)
∏

X∈X−

1

1 + exp
(∑m

j=1N
(·,j)
X

∑hj

i=1 wM
(i,j)
X

)
(5)

Here, D(i,j) is the set of cluster symbols in level i of clus-
tering j. Cluster combinationM (i,j)

X is the vector of cluster
assignments of the arguments of atom X in level i of clus-
tering j.

3. Learning
Given this model and an evidence database, the learning
problem is to find the MAP (maximum a posteriori) cluster
assignment and the optimal parameter values. The result-
ing model can be used directly to predict missing data, or
it may be used as input for subsequent processing, for in-
stance using coarse-to-fine algorithms (Kiddon & Domin-
gos, 2011).

The MAP inference problem has two subtasks, each of
which introduces some new challenges in our setting:
weight learning (learning optimal values of the param-
eters, given a candidate structure) and structure search
(finding the highest-scoring cluster assignment tensor, C).
We describe our approach to each of these problems below.
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3.1. Weight Learning

Let us first assume that cluster assignments are known. The
learning problem then reduces to finding the optimal pa-
rameters for the model, i.e., the cluster weights (P (c)) and
the weights of the predictive features (w(i,j)

MX
). The P (c)’s

are simply multinomial parameters, and can be trivially
computed in closed form.

Computing the atom prediction weights is more challeng-
ing. In other relational clustering models such as IRM,
MRC and AHM, each atom is predicted by a single cluster
combination, making the weight-learning problem trivial.
For instance, in MRC (a special case of our model), the
weight of a cluster combination is simply the log-odds of a
random atom being true. In our setting, however, a single
atom may be influenced by features at multiple levels in the
hierarchy.

A further complication is that we regularize the predictive
weights to prevent overfitting; we use both `0 and `1 penal-
ties. The `0 term is simply a penalty in log-space for each
non-zero predictive feature we introduce; this has the effect
of discouraging unnecessarily fine-grained predictive fea-
tures. The `1 term penalizes the sum of the absolute values
of the weights. Weight learning for log-linear models with
`1 regularization typically requires the use of iterative opti-
mization algorithms (e.g. Andrew & Gao, 2007). Since the
weights need to be relearned for each structure evaluated
during the search, these algorithms may be prohibitively
expensive.

Instead of running a full `1 optimizer at each step of the
search, we learn the weights approximately, in a coarse-to-
fine manner that takes advantage of the hierarchical struc-
ture. This can be done if each atom is explained by exactly
one hierarchical clustering (as is the case for the search
algorithm discussed in the next section). Note that each
cluster combination M on level i is a subset of some clus-
ter combination M ′ = ρ(M) on level i + 1; we refer to
the latter as the parent cluster combination. Notice that
if M = (c1, . . . , cp), then ρ(M) = (ρ(c1), . . . , ρ(cp)).
We compute the weights one level at a time, starting at
the coarsest level of the hierarchy. The model learned at
each level is a refinement of the level above, adding new,
more specific features if the improvement to likelihood out-
weighs the cost incurred by the `0 and `1 penalties.

Consider a cluster combination M , containing true atoms
X+

M and false atoms X−M . When we computewM , we have
already computed the weights of M ’s ancestors in the hier-
archy (i.e., the cluster combinations of which M is a sub-
set). Let sM be the sum of the weights of M ’s ancestors.
At this point, all atoms in M occur in the same set of non-
zero features (i.e., M and its ancestors); this may change
as we learn the weights of finer features in the lower levels

of the tree. At this stage of the computation, the likelihood
of the atoms in M can be written as follows:

LM =
(

1
1 + e−(sM+wM )

)|X+
M |( 1

1 + e(sM+wM )

)|X−M |
sM is fixed, having been previously computed. The goal is
to learn the optimal value of wM :

w∗M = arg max
wM

logLM − α01[wM 6= 0]− α1 |wM |

α0 and α1 are respectively the `0 and `1 penalty parame-
ters. We also add smoothing parameters β+ and β− to the
true and false atom counts; we omit them from the above
equations for simplicity.

The above computation can be done in closed form, despite
the discontinuity introduced by the `1 term. The expres-
sion (sM + wM ) can be interpreted as a ‘smoothed’ value
for M ’s feature, shrunk towards a coarser feature in the
hierarchy. Note that without the regularization terms, the
optimal value of wM would simply be (log (t/f )− sM ),
effectively ignoring the coarser features and learning a flat
model. The higher we set the regularization terms, the less
M changes the predictions of its ancestors.

3.2. Structure Search

The search for the optimal cluster assignments proceeds in
two stages. First, we search for the best flat multiple clus-
tering. This initial clustering can be done with any mul-
tiple clustering algorithm; MRC is a natural choice, since
its model is a special case of ours. Like MRC, we require
for tractability that each atom occur in exactly one cluster-
ing (though objects may still occur in multiple clusterings).
This partitions the database into several smaller databases,
each of which poses a separate hierarchical clustering prob-
lem. Algorithm 1 provides an overview of this procedure.
MULTICLUSTER(X,ml) may be any search algorithm that
returns a set of non-overlapping flat clusterings; we refer
the reader to Kok & Domingos (2007) for an example of
how this can be done. The novel part of the algorithm is
HIERARCHICALCLUSTER(X,ml), which replaces each of
the flat clusterings with a hierarchical clustering. We de-
vote the rest of this section to the discussion of this subrou-
tine.

We construct the hierarchy layer by layer, starting with
each object and predicate in a singleton cluster, and build-
ing progressively coarser clusters one level at a time. This
allows us to treat the hierarchical clustering problem as
a series of flat clustering problems, where the individual
items being clustered at each layer are the clusters from the
level below.

Algorithm 2 describes this procedure in more detail.
FLATCLUSTER(C(i)) is a subroutine that takes a set of
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Algorithm 1 MHRC-LEARN(X, ml)
input: X, a relational database

ml, max number of levels in the hierarchy
output: C, a multiple hierarchical clustering
C← ∅
D←MULTICLUSTER(X)
for all flat clusterings D(·,j) ∈ D do

XDj
← atoms contained by D(·,j)

C(·,j) ←HIERARCHICALCLUSTER(D(1,j),ml)
end for
return C

Algorithm 2 HIERARCHICALCLUSTER(X, ml)
input: X, a relational database

ml, max number of levels in the hierarchy
output: C, a hierarchical clustering
for all object and predicate symbols ok in X do
Ck ← {ok}

end for
curLevel← (C1, . . . , Cn)
for i← 1 to ml do
topLevel ← FLATCLUSTER(curLevel)
if topLevel is identical to curLevel then

break
end if
C(i) ← topLevel
curLevel ← topLevel

end for
return (C(1), . . . ,C(h))

clusters as input and partitions them, returning a coarser
set of clusters. We can use any clustering procedure that
exactly or approximately optimizes the posterior probabil-
ity. In our experiments, we use a simple greedy search that
individually moves each item to the best cluster, iterating
until convergence. Items can also be moved to newly cre-
ated singleton clusters. (The `0 penalty described in the
previous section discourages the creation of new clusters.)
It is straightforward to incorporate other search operations,
such as greedy merges and splits, random moves, etc. We
also restrict the algorithm to only merge predicate symbols
with other predicates of the same arity.

The coarse-to-fine weight learning scheme in section 3.1
runs in time linear in the number of features. However,
since we have one feature per cluster combination, this can
still be too expensive to run at each step of the search. The
weight learning can be further sped up by only updating the
weights significantly affected by the change in structure.
With the search procedure described in Algorithm 2, the
only features affected by a change are the descendents of
the altered top-level cluster combinations. Furthermore, we
only update the immediate descendents of the altered fea-

tures. This is an approximation; in principle, the weights of
the entire subtree could be affected. In practice, however,
the weights of non-immediate descendents are not signifi-
cantly affected by changes in the top-level structure.

For example, consider a top-level cluster combination M0,
its child M1, and M1’s child M2. If one of M0’s clusters is
altered, then M0’s true and false atom counts may change,
necessitating an update for M0’s weight, w0. This changes
s1, the sum of the weights of M1’s ancestors (s1 = w0).
We update w1 accordingly.

Now, note that s2 = w0+w1 = s1+w1. Recall that s1+w1

is a smoothed version of M1’s parameter. M1’s counts are
not affected by the changes to M0; the feature explains the
same set of atoms before and after the change. Therefore,
unless the regularization parameters are extremely large,
changes to M0 will not cause big changes to s2 = w1 + s1.
Consequently, w2 is relatively unaffected.

4. Preliminary Results
Note that HIERARCHICALCLUSTERING(X,ml) can be
run as a standalone algorithm on the full database, optimiz-
ing the model in section 2.4. For our initial experiments,
we implemented this version of the algorithm, learning a
single hierarchy. We compared two versions of the algo-
rithm: HRC1, which constructs a single level clustering
(ml = 1); HRC10 learns a hierarchy with up to 10 lev-
els (ml = 10). We evaluated these algorithms on the Ani-
mals (ANML), Nations (NATS), Kinship (KINS) and UMLS
datasets from Kemp et al. (2006). Table 1 describes the size
and composition of these domains. We performed 10-fold
cross validation, and evaluated the algorithms in a trans-
ductive setting: the test atoms were set to ‘unknown’, and
their values were predicted from the known atoms.

We used two evaluation criteria: AUC (area under the
precision-recall curve of the query atoms) and CLL (av-
erage conditional log-likelihood of query atoms).

We compared our algorithm to IRM and MRC. IRM and
MRC’s results are taken directly from (Kok & Domin-
gos, 2007). For HRC, we use α0 = 0.01. α1 = 0.1
on ANIMALS, and 0.01 on the other domains. We set
β+ + β− = 0.1, with the ratio between them reflecting
the ratio of true to false evidence atoms for the correspond-
ing predicate (this smoothing scheme is similar to the one
used by Kok & Domingos, 2008).

Despite the simpler search strategy we use, even the flat
version of HRC is generally competitive with IRM’s more
sophisticated search. Learning multiple levels does not
prove to be useful on the propositional ANML domain, but
slightly improves AUC on the three relational domains (at
the cost of a slightly lower CLL on NATS). Although the



Learning Multiple Hierarchical Relational Clusterings

O
bj

ec
ts

Fe
at

ur
es

R
el

at
io

ns

To
ta

l
at

om
s

Tr
ue

at
om

s

HRC1 HRC10 IRM MRC

AUC CLL AUC CLL AUC CLL AUC CLL

ANML 50 85 0 4250 1562 0.81 -0.46 0.80 -0.49 0.79 -0.43 0.80 -0.43
NATS 14 111 56 12,530 2565 0.68 -0.41 0.69 -0.43 0.75 -0.31 0.75 -0.31
KINS 104 0 26 281,216 10,686 0.74 -0.06 0.75 -0.06 0.68 -0.06 0.85 -0.05
UMLS 135 0 46 838,350 6529 0.70 -0.014 0.70 -0.014 0.80 -0.011 0.97 -0.004

Table 1. Experiments

improvements are small, the difference in AUC and CLL is
statistically significant on KINS and UMLS, the two largest
domains (as measured by a sign test with p = 0.05). We
suspect that the hierarchy will provide greater benefit on
larger, more complex domains with more missing data.
MRC proves to be the most successful system overall, sug-
gesting that the full multiple clustering version of the algo-
rithm may perform better than using a single hierarchy.

5. Conclusions & Future Work
In this paper, we described a unified model for rela-
tional clustering, incorporating both hierarchies and mul-
tiple clustering, and we proposed an efficient learning al-
gorithm for the model. The empirical usefulness of mul-
tiple clusterings has been previously demonstrated by Kok
& Domingos (2007); in this work, we performed a prelim-
inary evaluation of hierarchical relational clustering. Our
initial experiments show that our approach is competitive
with other relational clustering algorithms; however, more
experiments are needed on larger, more complex domains.

The most immediate direction for future work is to evaluate
the full version of the algorithm, learning multiple hierar-
chical clusterings. A further direction is to apply hierarchi-
cal relational clustering to learn the structure of Tractable
Markov Logic Networks (Domingos & Webb, 2012).
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