
Approximate Lifted Belief Propagation

Parag Singla
Department of Computer Science

University of Texas at Austin
Austin, TX 78712, U.S.A.

parag@cs.utexas.edu

Aniruddh Nath and Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.

{nath, pedrod}@cs.washington.edu

Abstract

Lifting can greatly reduce the cost of inference on first-
order probabilistic models, but constructing the lifted
network can itself be quite costly. In addition, the mini-
mal lifted network is often very close in size to the fully
propositionalized model; lifted inference yields little or
no speedup in these situations. In this paper, we address
both these problems. We propose a compact hypercube-
based representation for the lifted network, which can
greatly reduce the cost of lifted network construction.
We also present two methods for approximate lifted net-
work construction, which groups together similar but
distinguishable objects and treats them as if they were
identical. This can greatly reduce the size of the lifted
network as well as the time required for lifted network
construction, but potentially at some cost to accuracy.
The coarseness of the approximation can be adjusted
depending on the accuracy required, and we can bound
the resulting error. Experiments on six domains show
great efficiency gains with only minor loss in accuracy.

Introduction

Intelligent agents must be able to handle the complexity and
uncertainty of the real world. First-order logic is useful for
the first, and probabilistic graphical models for the second.
Combining the two has been the focus of much recent re-
search the emerging field of statistical relational learning
(Getoor and Taskar 2007). A variety of languages have been
proposed that combine the desirable features of both these
representations. The first inference algorithms for these lan-
guages worked by propositionalizing all atoms and clauses,
and then running standard probabilistic inference algorithms
on the ground model.

More recently, several algorithms have been proposed for
lifted inference, which deals with groups of indistinguish-
able variables, rather than individual ground atoms. Algo-
rithms for identifying sets of indistinguishable variables in-
clude lifted network construction (LNC; Singla and Domin-
gos 2008) and shattering (de Salvo Braz, Amir, and Roth
2005). Since the first-order representation is often much
smaller than the fully ground model, lifted inference is po-
tentially much more efficient than propositionalized infer-
ence. Interest in lifted inference has grown rapidly in re-
cent years (see Kersting, Ahmadi, and Natarajan (2009);
Kisyński and Poole (2009a; 2009b); Gordon, Hong, and

Dudı́k (2009); Brafman and Engel (2009); Taghipour et
al. (2009) etc.). The first lifted probabilistic inference al-
gorithm was first-order variable elimination, proposed by
Poole (2003) and extended by de Salvo Braz, Amir, and
Roth (2005). Singla and Domingos (2008) proposed the
first lifted approximate inference algorithm, a first-order ver-
sion of loopy belief propagation (BP; Yedidia, Freeman, and
Weiss 2003).

The cost of inference for these algorithms depends on the
size of the lifted network; this is often much smaller than the
full ground network. However, lifted network construction
can itself be quite expensive. The cost of LNC is highly sen-
sitive to the representation of the lifted network. We present
a compact hypercube representation, which can greatly re-
duce the cost of LNC.

Another problem with standard lifted inference algo-
rithms is that they often yield a lifted network very close
to the fully propositionalized network. In these situations,
the expensive process of lifted network construction yields
little or no speedup. This can be averted through approxi-
mate lifted inference, which groups together variables that
behave similarly, but are not completely identical. Approx-
imate lifting can yield a much smaller model, and therefore
a greater speedup. Approximate lifting can also reduce the
cost of lifted network construction.

In this paper, we propose two methods for approximate
lifted belief propagation. We also provide a bound on the
error for a given level of approximation. We perform an ex-
tensive evaluation of both exact and approximate lifted in-
ference; results show that our techniques greatly reduce the
cost of inference without significantly affecting the quality
of the solutions.

Two other approaches for approximate lifted inference
have recently been proposed. de Salvo Braz et al. (2009)
proposed a form of approximate lifting that combines lifted
belief propagation with box propagation (Mooij and Kap-
pen 2008). To our knowledge, this algorithm has not been
implemented and evaluated, and a detailed description has
not yet been published. Sen, Deshpande, and Getoor (2009)
proposed a lifting algorithm based on the notion of bisimu-
lation, and an approximate variant of it using mini-buckets
(Dechter and Rish 2003). Their technique is very effective
on some domains, but failed to yield a speedup in the Cora
entity resolution task, where our algorithms produce a sig-

92



nificant improvement. It is not clear how scalable their algo-
rithms are on the other domains considered in this paper.

Like Singla and Domingos (2008), we use Markov logic
as the representation language, but our methods are applica-
ble to many other first-order probabilistic representations.

Graphical Models

Graphical models compactly represent the joint distribution
of a set of variables X = (X1, X2, . . . , Xn) ∈ X as a
product of factors (Pearl 1988): P (X=x) = 1

Z

∏

k fk(xk),
where each factor fk is a non-negative function of a sub-
set of the variables xk, and Z is a normalization constant.
Under appropriate restrictions, the model is a Bayesian net-
work and Z = 1. A Markov network or Markov ran-
dom field can have arbitrary factors. Graphical models
can also be represented in log-linear form: P (X=x) =
1
Z

exp (
∑

i wigi(x)), where the features gi(x) are arbitrary
functions of the state. A factor graph (Kschischang, Frey,
and Loeliger 2001) is a bipartite undirected graph with a
node for each variable and factor in the model. Variables
are connected to the factors they appear in.

A key inference task in graphical models is computing
the marginal probabilities of some variables (the query)
given the values of some others (the evidence). This
problem is #P-complete, but can be solved approximately
using loopy belief propagation, which works by pass-
ing messages from variable nodes to factor nodes and
vice versa. The message from a variable to a factor is
µxf,i+1(a) =

∏

h∈nb(x)\{f} µhx,i(a), where nb(x) is

the set of factors it appears in. (Evidence variables send
1 for the evidence value, and 0 for others.) Typically,
µfx,1 = 1. The message from a factor to a variable is

µfx,i(a) =
∑

xa

(

f(xa)
∏

y∈nb(f)\{x} µyf,i(yxa
)

)

, where

nb(f) are the arguments of f ; xa is an assignment of values
to the variables in nb(f), with x set to a; yxa

is the value
of y in xa. The (unnormalized) marginal of variable x is
Mx,i(a) =

∏

h∈nb(x) µhx,i(a)

Many message-passing schedules are possible; the most
widely used one is flooding, where all nodes send messages
at each step. In general, belief propagation is not guaranteed
to converge, and it may converge to an incorrect result, but
in practice it often approximates the true probabilities well.

Lifted Belief Propagation

Markov logic (Richardson and Domingos 2006) is a proba-
bilistic extension of first-order logic. Formulas in first-order
logic are constructed from logical connectives, predicates,
constants, variables and functions. A grounding of a predi-
cate (or ground atom) is a replacement of all its arguments
by constants (or, more generally, ground terms). Similarly,
a grounding of a formula is a replacement of all its variables
by constants. A possible world is an assignment of truth
values to all possible groundings of predicates.

A Markov logic network (MLN) is a set of weighted first-
order formulas. Together with a set of constants, it defines
a Markov network with one node per ground atom and one

feature per ground formula. The weight of a feature is the
weight of the first-order formula that originated it. The prob-
ability distribution over possible worlds x specified by the
MLN and constants is thus P (x) = 1

Z
exp(

∑

i wini(x)),
where wi is the weight of the ith formula and ni(x) its num-
ber of true groundings in x.

Inference in an MLN can be carried out by creating the
corresponding ground Markov network and applying stan-
dard BP to it. A more efficient alternative is lifted belief
propagation, which avoids grounding the network as much
as possible (Singla and Domingos 2008). Lifted BP con-
structs a lifted network composed of supernodes and super-
features, and and applies BP to it. A supernode is a set
of atoms that send and receive exactly the same messages
throughout BP, and a superfeature is a set of ground clauses
that send and receive the same messages. A supernode and
a superfeature are connected iff some atom in the supernode
occurs in some ground clause in the superfeature.

The lifted network is constructed by starting with an ex-
tremely coarse network, and then refining it essentially by
simulating BP and keeping track of which nodes send the
same messages. Initially, one supernode is created for each
possible value of each predicate (for binary predicates, true,
false and unknown). All groundings of each value are in-
serted into the corresponding supernode. This is the initial
set of supernodes; in any given supernode, every atom would
send the same message in the first iteration of BP.

The next stage of LNC involves creating a set of super-
features corresponding to each clause. For a clause contain-
ing predicates P1, . . . , Pk, perform a join on each tuple of
matching supernodes (X1, . . . , Xk) (i.e. take the Cartesian
product of the relations, and select the tuples whose corre-
sponding arguments agree with each other). The result of
each join is a new superfeature, consisting of ground clauses
that would receive the same messages in the first BP step.

These superfeatures can be used to refine the supernodes,
by projecting each feature down to the arguments it shares
with each of its predicates. Atoms with the same projection
counts are indistinguishable, since they would have received
the same number of identical messages. These can be split
off into new, finer supernodes. Thus, the network is refined
by alternating between these two steps:

1. Refine superfeatures by performing joins on supernodes.

2. Refine supernodes by projecting superfeatures down to
their predicates, and merging atoms with the same pro-
jection counts.

For a detailed description of this algorithm, see Singla and
Domingos (2008).

The count n(s, F ) is the number of identical messages
atom s would receive in message passing from the features
in F . (As in Singla and Domingos (2008), we assume for
simplicity that each predicate occurs at most once in each
clause. This assumption can be easily relaxed by maintain-
ing a separate count for each occurrence.)

Belief propagation must be altered slightly to take
these counts into account. Since all the atoms in a su-
pernode have the same counts, we can set n(X, F ) =
n(s, F ), where s is an arbitrary atom in X . The

93



message from N to F becomes: µXF,i+1(x) =

µFX,i(x)n(X,F )−1
∏

H∈nb(X)\{F} µHX,i(x)n(X,H)

The marginal becomes
∏

H∈nb(X) µHX,i(x)n(X,H).

An important question remains: how to represent supern-
odes and superfeatures. Although this does not affect the
space or time cost of inference on the lifted network (where
each supernode and superfeature is represented by a single
symbol), it can greatly affect the cost of constructing the
lifted network. In general, finding the most compact repre-
sentation for supernodes and superfeatures is intractable.

Singla and Domingos (2008) considered two representa-
tions. The simplest option is to represent each supernode
or superfeature extensionally as a set of tuples (i.e., a rela-
tion), in which case joins and projections reduce to standard
database operations. However, in this case the cost of con-
structing the lifted network is similar to the cost of construct-
ing the full ground network, and can easily become the bot-
tleneck. A better option is to use a more compact resolution-
like representation, as in Poole (2003) and de Salvo Braz,
Amir, and Roth (2005; 2006).

Hypercube Representation
The choice of representation of the lifted network can
greatly affect the cost of LNC, as well as the memory cost
of representation. Even with the resolution-like representa-
tion, LNC can be prohibitively expensive. We address this
by proposing a new representation for the lifted network.

A hypercube is a vector of sets of literals,
[S1, S2, . . . , Sk]; the corresponding set of tuples is the
Cartesian product S1 × S2 × . . . × Sk. A supern-
ode or superfeature can be represented by a union
of disjoint hypercubes. For example, the tuple set
{(X1, Y1), (X1, Y2), (X1, Y3), (X2, Y3), (X2, Y4), (X2, Y5)}
can be represented as a union of two hypercubes:
[{X1} × {Y1, Y2, Y3}] and [{X2} × {Y3, Y4, Y5}]. No-
tice that this representation can be exponentially more
compact than both the extensional and resolution-like
representations.

A minimal decomposition of a set of tuples is a decom-
position with the minimal number of hypercubes. In gen-
eral, there can be more than one minimal decomposition,
and finding the best one is an NP-hard problem. (In two
dimensions, it is equivalent to the minimum biclique parti-
tion problem (Amilhastre, Vilarem, and Janssen 1998).) We
consider two approaches to constructing the hypercubes.

Bottom up. This approach starts with hypercubes for in-
dividual tuples and then repeatedly merges pairs of hyper-
cubes that differ from each other only in one argument. The
process stops when no such pair can be found. This process
is not guaranteed to find a globally minimal decomposition;
for instance, in the previous example, it might create the fol-
lowing hypercubes: [{X1} × {Y1, Y2}], [{X1, X2} × {Y3}],
[{X2} × {Y4, Y5}]. However, the decomposition is locally
minimal, in the sense that there are no further merges that
can be made.

Top-down. First, a bounding hypercube is constructed,
i.e., one which includes all the tuples in the set. For

Algorithm 1 FormHypercubes(Tuple set T)

Form bounding hypercube Cbound from T

H ← {Cbound}
while H contains some impure hypercube C do

Calculate rC , the fraction of true tuples ∈ C
for all variables v in C do

Decompose C into C = (C1, . . . , Ck)
by value of v (one hypercube per value)

Calculate (rC1
, . . . , rCk

)
C+ ← merge all Ci ∈ C with rCi

> rC

C− ← merge all Ci ∈ C with rCi
≤ rC

Calculate rC+

end for
Split C into (C+, C−) with highest rC+

Remove C from H; insert C+ and C−

end while
while H contains some mergeable pair (C1, C2) do

Replace C1 and C2 with merged hypercube Cnew

end while

the previous example, the bounding hypercube would be
[{X1, X2} × {Y1, Y2, Y3, Y4, Y5}]. This is a crude approxi-
mation to the set of tuples which need to be represented. The
hypercube is then recursively sub-divided so as to split apart
tuples from non-tuples, using a heuristic splitting criterion
(see Algorithm 1). Other criteria such as information gain
can also be used, as is commonly done in decision trees. The
process is continued recursively until we obtain pure hyper-
cubes, i.e., each hypercube either contains all valid tuples or
none (in which case it is discarded). When the number of tu-
ples is large, top-down hypercube construction can be faster
than bottom-up merging, but it does not guarantee a mini-
mal splitting (since hypercubes from two different branches
could potentially be merged). Therefore, once the final set
of hypercubes is obtained, we run the bottom-up approach
on these to obtain a minimal set.

The join and project operations are now defined in terms
of the hypercubes.

Hypercube join. When joining two supernodes, we join
each possible hypercube pair (each element of the pair com-
ing from the respective supernode). Joining a pair of hy-
percubes simply corresponds to taking an intersection of
the common variables and keeping the remaining remaining
ones as is. For example, given P(X, Y) and Q(Y, Z) defined
over the singleton hypercube sets {[{X1, X2} × {Y1, Y2}]}
and {[{Y1, Y3} × {Z1, Z2}]}, respectively, the joined hyper-
cube set is {[{X1, X2} × {Y1} × {Z1, Z2}]}. Instead of join-
ing each possible pair of hypercubes, we maintain an index
which tells which pairs will have a non-zero intersection.

Hypercube project. The project operation now projects
superfeature hypercubes onto the arguments the superfea-
ture shares with each of its predicates. Each supern-
ode hypercube maintains a separate set of counts. This
presents a problem because different superfeatures may
now project onto hypercubes which are neither disjoint
nor identical. For example, let us say we have superfea-
tures P(X, Y) ∨ Q(Y, Z) and P(X, Y) ∨ R(Y, Z) defined over

94



the hypercube sets {[{X1, X2} × {Y1} × {Z1, Z2}]} and
{[{X1, X2} × {Y1, Y2} × {Z1, Z2}]}, respectively. Project-
ing on the predicate P(X, Y), the resulting hypercube sets are
{[{X1, X2} × {Y1}]} and {[{X1, X2} × {Y1, Y2}]}, which
are neither disjoint nor identical. Therefore, the hypercubes
resulting from the project operation have to be split into
finer hypercubes such that each pair of resulting hypercubes
is either identical with each other or disjoint. This can be
done by choosing each intersecting (non-disjoint) pair of
hypercubes in turn and splitting them into the intersection
and the remaining components. The process continues un-
til each pair of hypercubes is disjoint. In the above ex-
ample, the finer set of hypercubes to split into would be
{[{X1, X2} × {Y1}], [{X1, X2} × {Y2}]}.

Approximate Lifting

Early stopping

The above LNC algorithm is guaranteed to create the min-
imal lifted network (Singla and Domingos 2008). Running
BP on this network is equivalent to BP on the fully propo-
sitionalized network, but potentially much faster. However,
in many problems, the minimal exact lifted network is very
close in size to the propositionalized network. Running LNC
to convergence may also be prohibitively expensive. Both of
these problems can be alleviated with approximate lifting.
The simplest way to make LNC approximate is to terminate
LNC after some fixed number of iterations k, thus creating k
lifted networks at increasing levels of fineness. No new su-
pernodes are created in the final iteration. Instead, we sim-
ply average the superfeature counts n(X, F ) for supernode
X over all atoms s in X .

Each resulting supernode contains nodes that send and re-
ceive the same messages during the first k iterations of BP.
By stopping LNC after k iterations, we are in effect pretend-
ing that nodes with identical behavior up to this point will
continue to behave identically. This is a reasonable approxi-
mation, since for two nodes to be placed in the same supern-
ode, all evidence and network topology within a distance
of k − 1 links must be identical. If the nodes would have
been separated in exact LNC, this would have been a result
of some difference at a distance greater than k − 1. In be-
lief propagation, the effects of evidence typically die down
within a short distance. Therefore, two nodes with similar
neighborhoods would be expected to behave similarly for
the duration of BP.

The error induced by stopping after k iterations can be
bounded by bounding the additional error introduced at each
BP step as a result of the approximation (Ihler, Fisher, and
Willsky 2005). The bound can be calculated using a mes-
sage passing algorithm similar to BP on the level k+1 lifted
network. The details of the LBP bound calculation are de-
scribed in Singla, Nath, and Domingos (2010).

Noise-tolerant hypercube formation

This approximation can be used when the hypercube repre-
sentation is used for supernodes and superfeatures. During
the top-down construction of hypercubes, instead of refining
the hypercubes until the end, we stop the process on the way

allowing for at most a certain maximum amount of noise in
each hypercube. The goal is to obtain the largest possible
hypercubes while staying within the noise tolerance thresh-
old. Different measures of noise tolerance can be used. One
such measure which is simple to use and does well in prac-
tice is the number of tuples not sharing the majority truth
value in the hypercube. Depending on the application, other
measures can be used.

This scheme allows for a more compact representation of
supernodes and superfeatures, potentially saving both mem-
ory and time. This approximation also allows the construc-
tion of larger supernodes, by virtue of grouping together cer-
tain ground predicates which were earlier in different su-
pernodes. These gains come at the cost of some loss in ac-
curacy due to the approximations introduced by noise tol-
erance. However, as we will see in the experiment section,
the loss in accuracy is offset by the gains in both time and
memory.

As in the previous section, we can derive an error bound
by bounding the additional error at each step, but calculat-
ing this error bound requires running a message-passing al-
gorithm similar to BP on the exact lifted network.

Experimental Results

We compared the performance of lifted BP (exact and ap-
proximate) with the ground version on five real domains
and one artificial domain. We implemented lifted BP as an
extension of the open-source Alchemy system (Kok et al.
2008). Unless otherwise stated, weights were trained using
L-BFGS to optimize pseudo-likelihood (Besag 1975), or us-
ing voted perceptron learning (Singla and Domingos 2005).
Diagnosing the convergence of BP is a difficult problem; we
ran it for 1000 steps for all algorithms in all experiments.
See Singla, Nath, and Domingos (2010) for more details of
the experiments and datasets.

Datasets

Entity Resolution We used the version of McCallum’s
Cora database available on the Alchemy website (Kok et
al. 2008), and the TF-IDF-based model described by Singla
and Domingos (2005). The dataset contains 1295 citations
to 132 different research papers. The inference task was to
detect duplicate citations, authors, titles and venues.

Advising Relationships This task was to predict advising
relationships between students and professors (as described
in Richardson and Domingos (2006)), using the UW-CSE
database and MLN publicly available from the Alchemy
website (Kok et al. 2008), without clauses containing ex-
istential quantifiers. The database contains a total of 2678
groundings of predicates.

Protein Interactions We predicted protein interactions in
the MIPS Comprehensive Yeast Genome Database (Mewes
et al. 2002), using the model and dataset described by Davis
and Domingos (2009). The dataset contains four disjoint
subsets, each with about 450 proteins.

95



Hyperlink Analysis The goal of this task was to predict
which web pages point to each other, given their topics. We
used the relational version of the WebKB dataset (Craven
and Slattery 2001), which consists of labeled web pages
from the computer science departments of four universities.
We used only those web pages for which we had page class
information (person, student, faculty, department, research
project, course). This contained 1208 web pages and 10063
web links. The MLN contained one rule for each pair of
classes, stating states that if a page is of the first class and
links to another page, then the linked page is likely to have
the second class. An additional rule for stating reflexivity
was also incorporated.

Image Denoising Image denoising is the problem of re-
moving noise from an image where some of the pixel values
have been corrupted. We used a simple binary image from
Bishop (2006, Section 8.3.3), down-sampled to 400 by 400
pixels. We randomly introduced noise in each of the pixels
with 10% probability (i.e. noisy pixels were flipped from
being in the background to foreground and vice-versa). The
MLN contained rules stating that the actual value of a pixel
is likely to be same as the observed value (with a weight
of 2.1), and that neighbors are likely to have the same pixel
value (with a weight of 1.0).

Social Networks We also experimented with the example
“Friends and Smokers” MLN from Richardson and Domin-
gos (2006), on a 1000 person network. For a randomly cho-
sen 10% of the network, we know (a) whether they smoke
or not, and (b) who 10 of their friends are (other friendship
relations are still assumed to be unknown). Cancer(x) is
unknown for all x. See Singla, Nath, and Domingos (2010)
for details of how the evidence was generated. We queried
all unknown atoms.

Algorithms and metrics

We report results for several algorithms: ground (plain,
ground version of BP), extensional, resolution, hypercube
(three representations for lifted BP), early stopping and
noise-tolerant (two approximate versions of lifted BP). For
early stopping, three iterations of lifted network construction
were used, with the hypercube representation (unless other-
wise mentioned). For noise-tolerant hypercube construction,
we allowed at most one tuple to have a truth value differing
from the majority value. For certain datasets, not all algo-
rithms were compared; these cases will be mentioned specif-
ically in the results section.

We measure conditional log-likelihood (CLL) to compare
the accuracy of exact and approximate lifted BP.

Results

Table 1 compares time, memory and CLL for the algorithms
described above. The reported results are the average over
the respective splits described in Singla, Nath, and Domin-
gos (2010). Separate results are not reported for the hyper-
cube representation on Denoise, since the resulting hyper-
cubes are degenerate, and equivalent to the extensional rep-
resentation. For FS, we do not report accuracy results, as we
did not have the ground truth.

In all cases, LNC with extensional or resolution-like rep-
resentations is slower than grounding the full network. The
hypercube representation allows LNC to overtake standard
network construction on WebKB and Cora. Introducing hy-
percube noise tolerance makes LNC faster on FS as well, at
some cost to accuracy.

Running BP on the lifted network is much faster than
ground BP on all domains except Denoise. Here running
LNC to the end does not give any benefit and degenerates
into the ground network. Hence, BP running times are al-
most the same. However, the early stopping approxima-
tion is highly beneficial in this domain, resulting in order-
of-magnitude speedups with some loss in CLL.

On all datasets besides Denoise, the exact lifted network
has a much smaller number of (super)features than the fully
ground network; the hypercube representation and both ap-
proximations further reduce the number of features and the
memory requirements in some domains. On Denoise, early
stopping reduces the number of features by more than three
orders of magnitude.

Accuracies for the ground and exact lifted versions of BP
are the same. Interestingly, early stopping has little or no
effect on accuracy. Introducing noise tolerance does result
in some loss of accuracy, but it yields large improvements in
time and memory.

We also analyzed how time, memory and accuracy change
with varying criteria for early stopping and noise tolerance.
We present these results for two datasets, one for each of
early stopping (Denoise) and noise tolerance (Yeast). On
Denoise, we varied the number of iterations of LNC from 1
to 10 (10 represents the case of running LNC until conver-
gence). Time increases monotonically with increasing num-
ber of iterations. Memory usage is almost constant until six
iterations, after which it increases monotonically. The al-
most constant behavior is due to the fact that very few extra
superfeatures are created in the first few iterations. CLL con-
verges to the optimum after four iterations; at this stage, time
and memory requirements are still very small compared to
running LNC until the end.

On the Yeast domain, the noise tolerance was varied from
zero to five (zero being the exact case). Time and memory
decrease monotonically with increasing noise tolerance, as
expected. Increasing noise tolerance does not seem to have
any effect on CLL, which stays constant. Singla, Nath, and
Domingos (2010) contains additional experimental results,
including graphs of time, memory, CLL, and area under the
precision-recall curve on Denoise and Yeast.

Conclusions
In this paper, we presented a more compact lifted network
representation, and two algorithms for approximate lifted
belief propagation. Experiments on a number of datasets
show that these algorithms often greatly reduce the time
and memory requirements, relative to both ground and ex-
act lifted BP, with little loss in accuracy.

Directions for future work include generalizing our ap-
proach to other kinds of inference, exploring other forms of
approximation, and applying these algorithms to more do-
mains.

96



Table 1: Experimental Results

Algorithm Time (s) Mem (MB) CLL

C
o
ra

Ground 310.2 138 -0.531
Extensional 63.8 137 -0.531
Resolution 64.1 138 -0.531
Hypercube 53.8 110 -0.531
Early Stop 35.4 108 -0.531
Noise-Tol. 37.8 102 -1.624

U
W

-C
S

E

Ground 503.7 101 -0.022
Extensional 223.6 193 -0.022
Resolution 222.9 193 -0.022
Hypercube 252.1 180 -0.022
Early Stop 104.6 80 -0.022
Noise-Tol. 99.8 76 -0.024

Y
ea

st

Ground 1777.9 426 -0.033
Extensional 81.3 443 -0.033
Resolution 84.0 443 -0.033
Hypercube 208.7 354 -0.033
Early Stop 209.3 354 -0.033
Noise-Tol. 99.0 304 -0.033

W
eb

-K
B

Ground 1346.3 393 -0.036
Extensional 27.8 285 -0.036
Resolution 27.9 287 -0.036
Hypercube 0.8 94 -0.036
Early Stop 0.8 94 -0.036
Noise-Tol. 0.8 94 -0.036

D
en

o
is

e Ground 4406.6 748 -0.011
Extensional 4525.3 2202 -0.011
Resolution 4631.9 2247 -0.011
Early Stop 34.0 440 -0.064

F
S

Ground 5942.2 1873
Extensional 163.7 2074
Resolution 45.3 1423
Hypercube 52.1 1127
Early Stop 51.7 1127
Noise-Tol. 3.1 1123

Acknowledgments
This research was partly funded by ARO grant W911NF-
08-1-0242, AFRL contract FA8750-09-C-0181, DARPA con-
tracts FA8750-05-2-0283, FA8750-07-D-0185, HR0011-06-C-
0025, HR0011-07-C-0060 and NBCH-D030010, NSF grants IIS-
0534881 and IIS-0803481, and ONR grant N00014-08-1-0670.
The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied, of ARO,
DARPA, NSF, ONR, or the United States Government.

References
Amilhastre, J.; Vilarem, M. C.; and Janssen, P. 1998. Complexity
of minimum biclique cover and minimum biclique decomposition
for bipartite domino-free graphs. Discrete Appl. Math. 86.

Besag, J. 1975. Statistical analysis of non-lattice data. Statistician
24.

Bishop, C. M. 2006. Pattern Recognition and Machine Learning.
Springer.

Brafman, R., and Engel, Y. 2009. Lifted optimization for relational
preference rules. In Proc. SRL-09.

Craven, M., and Slattery, S. 2001. Relational learning with statisti-
cal predicate invention: Better models for hypertext. Mach. Learn.
43.

Davis, J., and Domingos, P. 2009. Deep transfer via second-order
markov logic. In Proc. ICML-09.

de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted first-order
probabilistic inference. In Proc. IJCAI-05.

de Salvo Braz, R.; Amir, E.; and Roth, D. 2006. MPE and partial
inversion in lifted probabilistic variable elimination. In Proc. AAAI-
06.

de Salvo Braz, R.; Natarajan, S.; Bui, H.; Shavlik, J.; and Russell,
S. 2009. Anytime lifted belief propagation. In Proc. SRL-09.

Dechter, R., and Rish, I. 2003. Mini-buckets: A general scheme
for bounded inference. J. ACM 50(2).

Getoor, L., and Taskar, B., eds. 2007. Introduction to Statistical
Relational Learning. MIT Press.

Gordon, G.; Hong, S. A.; and Dudı́k, M. 2009. First-order mixed
integer linear programming. In Proc. UAI-09.

Ihler, A. T.; Fisher, J. W.; and Willsky, A. S. 2005. Loopy belief
propagation: Convergence and effects of message errors. J. Mach.
Learn. Res. 6.

Kersting, K.; Ahmadi, B.; and Natarajan, S. 2009. Counting belief
propagation. In Proc. UAI-09.

Kisyński, J., and Poole, D. 2009a. Constraint processing in lifted
probabilistic inference. In Proc. UAI-09.

Kisyński, J., and Poole, D. 2009b. Lifted aggregation in directed
first-order probabilistic models. In Proc. IJCAI-09.

Kok, S.; Sumner, M.; Richardson, M.; Singla, P.; Poon, H.; Lowd,
D.; Wang, J.; and Domingos, P. 2008. The Alchemy system for
statistical relational AI. Technical report, Univ. of Washington.

Kschischang, F. R.; Frey, B. J.; and Loeliger, H.-A. 2001. Factor
graphs and the sum-product algorithm. IEEE T. Inform. Theory 47.

Mewes, H. W.; Frishman, D.; Güldener, U.; Mannhaupt, G.;
Mayer, K.; Mokreis, M.; Morgenstern, B.; Münsterkötter, M.;
Rudd, S.; and Weil, B. 2002. MIPS: a database for genomes and
protein sequences. Nucleic Acids Res. 30.

Mooij, J. M., and Kappen, H. J. 2008. Bounds on marginal proba-
bility distributions. In Proc. NIPS-08.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.

Poole, D. 2003. First-order probabilistic inference. In Proc. IJCAI-
03.

Richardson, M., and Domingos, P. 2006. Markov logic networks.
Mach. Learn. 62.

Sen, P.; Deshpande, A.; and Getoor, L. 2009. Bisimulation-based
approximate lifted inference. In Proc. UAI-09.

Singla, P., and Domingos, P. 2005. Discriminative Training of
Markov Logic Networks. In Proc. AAAI-05.

Singla, P., and Domingos, P. 2008. Lifted first-order belief propa-
gation. In Proc. AAAI-08.

Singla, P.; Nath, A.; and Domingos, P. 2010. Approximate lifted
belief propagation. Technical report, Univ. of Washington.

Taghipour, N.; Meert, W.; Struyf, J.; and Blockeel, H. 2009. First-
order Bayes-ball for CP-logic. In Proc. SRL-09.

Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2003. Understanding
belief propagation and its generalizations. In Exploring Artificial
Intelligence in the New Millenium. Science and Technology Books.

97


